Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1727-1732, 2021
Esterification of free fatty acids in a rotor-stator spinning disc reactor
Fatty acid methyl esters (FAMEs) were produced by the esterification of free fatty acids (FFA) with methanol, and sulfuric acid as the catalyst in a rotor-stator spinning disc reactor (RSSDR). The RSSDR, which shows excellent mixing efficiency and fast phase separation, was used as a novel continuous-flow esterification reactor. The influence of the variables (e.g., rotational speed, volume flow rate, rotor-stator distance, methanol-FFA molar ratio, catalyst dosage, and temperature) on esterification conversion (η) and productivity of FAMEs (PFAME) were investigated. It was found that the experimental parameters have a great impact on the η and PFAME in the RSSDR system, due to the effect of micromixing intensity and residence time distribution. Furthermore, to compare with other traditional esterification reactors, the values of η, PFAME, and PFAME per unit reactor volume (PFAME/VR) in the RSSDR were also employed to assess the performance for the production of FAMEs. It shows that the maximum values of PFAME, and PFAME/VR attained were 0.14mol/min and 3.06 X 10-2 mol/(mL min), respectively. Therefore, the RSSDR is proven to be an effective esterification reactor with high esterification conversion in comparison to conventional esterification reactors.
[References]
  1. Li ZH, Lin PH, Wu JCS, Huang YT, Lin KS, Wu KCW, Chem. Eng. J., 234, 9, 2013
  2. Moazeni F, Chen YC, Zhang GS, J. Clean Prod., 216, 117, 2019
  3. Sanchez-Cantu M, Perez-Diaz LM, Morales-Tellez M, Martinez-Santamaria I, Hilario-Martinez JC, Sandoval-Ramirez J, Fuel, 189, 436, 2017
  4. Tang ZE, Lim S, Pang YL, Ong HC, Lee KT, Renew. Sust. Energ. Rev., 92, 235, 2018
  5. Sendzikiene E, Makareviciene V, Janulis P, Renew. Energy, 31(15), 2505, 2006
  6. Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X, Bioresour. Technol., 100(19), 4368, 2009
  7. Mata TM, Pinto F, Caetano N, Martins AA, J. Clean Prod., 184, 481, 2018
  8. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL, Renew. Energy, 130, 633, 2019
  9. Cavalcanti EDC, Aguieiras ECG, da Silva PR, Duarte JG, Cipolatti EP, Fernandez-Lafuente R, da Silva JAC, Freire DMG, Fuel, 215, 705, 2018
  10. Boffito DC, Pirola C, Galli F, Di Michele A, Bianchi CL, Fuel, 108, 612, 2013
  11. Talebian-Kiakalaieh A, Amin NAS, Mazaheri H, Appl. Energy, 104, 683, 2013
  12. Souza RD, Vats T, Chattree A, Siril PF, Catal. Lett., 148(9), 2848, 2018
  13. Chen YH, Wang LC, Tsai CH, Shang NC, Ind. Eng. Chem. Res., 49(9), 4117, 2010
  14. Ni J, Meunier FC, Appl. Catal. A: Gen., 333(1), 122, 2007
  15. Canakci M, Van Gerpen J, T. Asae, 44, 1729, 2001
  16. Lucena IL, Silva GF, Fernandes FAN, Ind. Eng. Chem. Res., 47(18), 6885, 2008
  17. Marchetti JM, Errazu AF, Biomass. Bioenerg., 32, 892, 2008
  18. Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD, Antunes OAC, Catal. Lett., 122(1-2), 20, 2008
  19. Wen ZZ, Yu XH, Tu ST, Yan JY, Dahlquist E, Bioresour. Technol., 100(12), 3054, 2009
  20. Deshmane VG, Gogate PR, Pandit AB, Ind. Eng. Chem. Res., 48(17), 7923, 2009
  21. Choedkiatsakul I, Ngaosuwan K, Assabumrungrat S, Tabasso S, Cravotto G, Biomass Bioenerg., 77, 186, 2015
  22. Stacy CJ, Melick CA, Caimcross RA, Fuel. Process. Technol., 124, 70, 2014
  23. Meeuwse M, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. Sci., 65(1), 466, 2010
  24. Wang YB, Li J, Jin Y, Chen M, Ma R, Chem. Eng. Process., 149, 107834, 2020
  25. van Kouwen ER, Winkenwerder W, Brentzel Z, Joyce B, Pagano T, Jovic B, Bargeman G, van der Schaaf J, Chem. Eng. Process., 160, 108303, 2021
  26. Julia K, Hinrichsen O, Chem. Eng. Process., 136, 152, 2019
  27. Visscher F, van der Schaaf J, de Croon MHJM, Schouten JC, Chem. Eng. J., 185, 267, 2012
  28. Wang YB, Li J, Jin Y, Luo JH, Cao Y, Chen M, Sep. Purif. Technol., 207, 158, 2018
  29. Mendoza PG, Weusten SJC, de Groot MT, Keurentjes JTF, Schouten JC, van der Schaaf J, Int. J. Heat. Mass. Tran., 104, 650, 2017
  30. Meeuwse M, Hamming E, van der Schaaf J, Schouten JC, Chem. Eng. Process., 50(10), 1095, 2011
  31. Lucena IL, Saboya RMA, Oliveira JFG, Rodrigues ML, Torres AEB, Cavalcante CL, Parente EJS, Silva GF, Fernandes FAN, Fuel, 90(2), 902, 2011
  32. Wang YB, Li J, Jin Y, Chen M, Cao Y, Luo JH, Chinese J. Chem. Eng., 27, 2643, 2019
  33. Wang YB, Li J, Jin Y, Luo JH, Chen M, Yan C, Chem. Eng. J., 362, 357, 2019
  34. Wang YB, Chen M, Jin Y, Ouguang Y, Li J, J. Taiwan Inst. Chem. Eng., 115, 20, 2020
  35. Qiu Z, Petera J, Weatherley LR, Chem. Eng. J., 210, 597, 2012
  36. Chaudhuri A, Kuijpers KPL, Hendrix RBJ, Shivaprasd P, Hacking JA, Emanuelsson EAC, Noel T, van der Schaaf J, Chem. Eng. J., 400, 15, 2020
  37. Berrios M, Skelton RL, Chem. Eng. J., 144(3), 459, 2008
  38. Boffito DC, Galli F, Pirola C, Bianchi CL, Patience GS, Ultrason. Sonochem., 21, 1969, 2014
  39. Photaworn S, Tongurai C, Kungsanunt S, Chem. Eng. Process., 118, 1, 2017
  40. Yang HJ, Chu GW, Zhang JW, Shen ZG, Chen JF, Ind. Eng. Chem. Res., 44(20), 7730, 2005
  41. Lopes JP, Cardoso SSS, Rodrigues AE, Chem. Eng. J., 176-177, 3, 2011
  42. Yang K, Chu GW, Shao L, Luo Y, Chen JF, Chem. Eng. J., 153(1-3), 222, 2009
  43. Haseidl F, Pottbacker J, Hinrichsen O, Chem. Eng. Process., 104, 181, 2016
  44. Chen YH, Huang YH, Lin RH, Shang NC, Bioresour. Technol., 101(2), 668, 2010
  45. Boulange-Petermann L, Gabet C, Baroux B, Colloid J., 272, 56, 2006
  46. Yunus NM, Abidin SZ, Yee CS, Energy Sources Part A-Recovery Util. Environ. Eff., 40(21), 2518, 2018