Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1715-1719, 2021
Effective pore control and enhanced strength of cellulose acetate using polyethylene glycol for improved battery stability
Water-channels were generated into cellulose acetate (CA) via the addition of polyethylene glycol (PEG) and water-assisted pressures. It was found that the PEG used as the plasticizer could enable pores in CA to be controlled. Since the PEG had a relatively small molecular weight, it easily penetrated into polymer chains and formed abundant free volumes in the CA, enabling the pore control. In addition, the PEG enhanced the thermal stability of CA by forming new bipolar interactions and hydrogen bonding between the CA chains and the hydroxyl groups of PEG. From these result, it could be expected that due to the low cost and eco-friendliness of PEG and CA, they could be widely used to manufacture separators used in batteries.
[References]
  1. Lizundia E, Costa CM, Alves R, Menedez SL, Carbohydr. Polym. Technol. Appl., 1, 100001, 2020
  2. Ou S, Lin Z, He X, Przesmitzki S, Bouchard J, Trans. Res. Part D, 81, 102248, 2020
  3. Dong T, Atifeen WU, Choi J, Yoo K, Ko T, Chem. Eng. J., 398, 125646, 2020
  4. Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, Ouyang M, eTransportation, 1, 100005, 2019
  5. Zhu C, Zhang J, Xu J, Yin X, Wu J, Chen S, Zhu Z, Wang L, Wang H, Carbohydr. Polym., 248, 116753, 2020
  6. Huang XS, J. Power Sources, 323, 17, 2016
  7. Arifeen WU, Kim MC, Ting D, Kurniawan R, Choi JW, Yoo KW, Ko TJ, Mater. Chem. Phys., 245, 122780, 2020
  8. Liang X, Yang Y, Jin X, Cheng J, J. Mater. Sci. Technol., 32(3), 200, 2016
  9. Shao YB, Xu LF, Zhao XW, Li JQ, Hu ZY, Fang C, Hu JM, Guo D, Ouyang MG, Int. J. Hydrog. Energy, 45(4), 3108, 2020
  10. Lee CS, Lee JH, Park MS, Kim JH, Korean Chem. Eng. Res., 57(3), 392, 2019
  11. Miao L, Huan H, Wang Z, Lv Y, Xiong W, Zhu D, Gan L, Li L, Chem. Eng., 382, 122945, 2020
  12. Bakangura E, Cheng CL, Wu L, Ge XL, Ran J, Khan MI, Kamana E, Afsar N, Irfan M, Shehzad A, Xu TW, J. Membr. Sci., 537, 32, 2017
  13. Wang J, Xia Y, Liu Y, Li W, Zhao D, Energy Storage Mater., 22, 147, 2019
  14. Xu W, Wang Z, Shi L, Ma Y, Yuan S, Sun L, Zhao Y, Zhang M, Zhu J, ACS Appl. Mater. Interfaces, 7, 20678, 2015
  15. Lee YM, Choi NS, Lee JA, Seol WH, Cho KY, Jung HY, Kim JW, Park JK, J. Power Sources, 146(1-2), 431, 2005
  16. Lee YM, Kim JW, Choi NS, Lee JA, Seol WH, Park JK, J. Power Sources, 139(1-2), 235, 2005
  17. Sheng L, Xu R, Zhang H, Bai Y, Song S, Liu G, Wang T, Huang X, He J, J. Electroanal. Chem., 873, 114391, 2020
  18. Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z, Energy Storage Mater., 31, 195, 2020
  19. Liu B, Jia Y, Yuan C, Wang L, Gao X, Yin S, Xu J, Energy Storage Mater., 24, 85, 2020
  20. Lee WG, Kim DH, Jeon WC, Kwak SK, Kang SJ, Kang SW, Sci. Rep., 7(1), 1287, 2017
  21. Meng Y, Shu L, Liu L, Wu Y, Xie LH, Zhao MJ, Li JR, J. Membr. Sci., 591, 117360, 2019
  22. Qiu WJ, An CH, Yan YW, Xu J, Zhang ZJ, Guo W, Wang Z, Zheng ZJ, Wang ZB, Deng QB, Li JS, J. Power Sources, 423, 98, 2019
  23. Li JM, Hu CS, Shao JM, Li HJ, Li PY, Li XC, He WD, Polymer, 119, 152, 2017
  24. Kim HY, Cho YH, Kang SW, J. Ind. Eng. Chem., 78, 421, 2019
  25. Lee WG, Kang SW, J. Ind. Eng. Chem., 70, 103, 2019
  26. Hwang J, Choi J, Kim JM, Kang SW, Macromol. Res., 24(11), 1020, 2016