Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1592-1607, 2021
Thermo-hydraulic performance of nanofluids in a bionic fractal microchannel heat sink with traveling-wave fins
Aiming at high working power and heat dissipation of electronic components, this study developed a novel bionic fractal microchannel heat sink with traveling-wave fins based on fractal theory and disk-like tree-like structure. α-Al2O3-water nanofluid was chosen as the working fluid instead of water in the microchannel heat sink. Thermohydraulic performance of nanofluids in the bionic fractal microchannel heat sink with traveling-wave fins was simulated numerically, and its comprehensive performance was studied. The main control parameters of this study include the depths of the traveling wave structure (h=0.00005 m, 0.00010m, 0.00015 m, 0.00020 m, 0.00025 m), the eccentricity ratios of the traveling wave structure (e=0, 0.1, 0.2, 0.3, 0.4) and Reynolds numbers (Re=200-1,000). Results indicate that the surface temperature of the microchannel heat sink decreases with Reynolds number and depth of traveling wave structure. The use of traveling ribs at fractal corners can convert the inhomogeneous flow caused by the fractal effect into a stable horizontal channel flow more efficiently, while the temperature uniformity increases with depth and eccentricity ratio. Results also show that the traveling wave structure has the best overall performance when the eccentricity ratio of the traveling wave structure is 0.1 or 0.2, and the depth is 0.00020 m or 0.00025 m.
[References]
  1. Li H, He Y, Wang C, Wang X, Hu Y, Appl. Therm. Eng., 236, 117, 2019
  2. Chen M, Wang X, Hu Y, He Y, J. Quant. Spectrosc. Ra., 250, 107029, 2020
  3. Dehkordi KG, Karimipour A, Afrand M, Toghraie D, Isfahani AHM, Int. J. Thermophys., 41, 132, 2020
  4. Sheikholeslami M, Gerdroodbary MB, Mousavi SV, Ganji DD, Moradi R, J. Magn. Magn. Mater., 460, 302, 2018
  5. Tuckerman DB, Pease RFW, IEEE. Electr. Device. L., 2(5), 126, 1981
  6. Sajadifar SA, Karimipour A, Toghraie D, Eur. J. Mech. B-Fluid., 61, 25, 2017
  7. Rostami S, Ahmadi-Danesh-Ashtiani H, Toghraie D, Fazaeli R, Physica A., 548, 123879, 2020
  8. Hua C, Wang X, Gao X, Zheng H, Han X, Chen G, Appl. Therm. Eng., 126, 1058, 2017
  9. Li Z, Shahsavar A, Niazi K, Al-Rashed AA, Rostami S, Int. Commun. Heat Mass.Transf., 115, 104628, 2020
  10. Choi SU, Eastman JA, ASME-Publications-Fed, 231, 99, 1995
  11. Bahiraei M, Mazaheri N, Moayedi H, Int. J. Heat. Mass Transf., 151, 119419, 2020
  12. Kumar A, Sugunamma V, Sandeep N, Ramana R, Multidiscip. Model. Mater. Struct., 15(1), 103, 2018
  13. Sheikholeslami M, Abelman S, Eng. Computation., 35(5), 1855, 2017
  14. Izadi M, Bastani B, Sheremet MA, Adv. Powder Technol., 31(6), 2493, 2020
  15. Werner DH, Ganguly S, IEEE. Antenn. Propag. M., 45(1), 38, 2003
  16. Bejan A, Errera MR, Fractals., 5(04), 685, 1997
  17. Bejan A, J. Heat Transf., 122(3), 430, 2000
  18. Pence DV, Nanosc. Microsc. Therm., 6(4), 319, 2003
  19. Varmazyar M, Habibi M, Amini M, Pordanjani AH, Afrand M, Vahedi SM, Powder Technol., 366, 164, 2020
  20. He W, Mashayekhi R, Toghraie D, Akbari OA, Tlili I, Int. Commun. Heat Mass Transf., 117, 104700, 2020
  21. Chen Y, Cheng P, Int. J. Heat. Mass Transf., 45, 2643, 2002
  22. Ma P, Fu T, Zhu C, Ma Y, Korean J. Chem. Eng., 36(1), 21, 2019
  23. Zhang LX, Peng DY, Lyu WJ, Xin F, Chem. Eng. J., 263, 452, 2015
  24. Emerson DR, Cieslicki K, Gu X, Barber RW, Lab Chip, 6(3), 447, 2006
  25. Izadi M, Pour SH, Yasuri AK, Chamkha AJ, J. Therm. Anal. Calorim., 136, 2461, 2019
  26. Bahiraei M, Monavari A, Appl. Therm. Eng., 179, 115621, 2020
  27. Bao K, Hua C, Wang X, Han X, Chen G, Int. J. Heat. Mass Transf., 154, 119672, 2020
  28. Talebizadehsardari P, Rahimzadeh H, Ahmadi G, Inthavong K, Keshtkar MM, Moghimi MA, Adv. Powder Technol., 31(8), 3134, 2020
  29. Rostami S, Aghaei A, Joshaghani AH, Hezaveh HM, Sharifpur M, Meyer JP, J. Therm. Anal. Calorim., 143, 1569, 2021
  30. Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y, Therm. Sci. Eng. Prog., 18, 100520, 2020
  31. Herman C, Kang E, Int. J. Heat Mass Transf., 45(18), 3741, 2002
  32. Qi C, Chen T, Tu J, Wang Y, Korean J. Chem. Eng., 37(12), 2104, 2020
  33. Guzman AM, Cardenas MJ, Urzua FA, Araya PE, Int. J. Heat Mass Transf, 52(15-16), 3778, 2009
  34. Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837, 2019
  35. Qi C, Chen T, Wang Y, Yang L, Korean J. Chem. Eng., 37(9), 1466, 2020
  36. Qi C, Hu JD, Liu MN, Guo LX, Rao ZH, Energy Conv. Manag., 153, 557, 2017
  37. Yan SR, Golzar A, Sharifpur M, Meyer JP, Liu DH, Afrand M, Int. J. Mech. Sci., 185, 105832, 2020
  38. Tian MW, Rostami S, Aghakhani S, Goldanlou AS, Qi C, Int. J. Mech. Sci., 189, 105975, 2021
  39. Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ, J. Mol. Liq., 266, 797, 2018
  40. Hu Y, Shi L, Zhang Z, He Y, Zhu J, Energy Conv. Manag., 213, 112829, 2020
  41. Li H, He Y, Wang X, Liu D, Liu Z, J. Alloy. Compd., 773, 743, 2019
  42. Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z, J. Clean Prod., 221, 885, 2019
  43. Shastry DMC, Arunachala UC, J. Energy Storage, 28, 101312, 2020
  44. Wang X, Li Y, Yan Y, Wright E, Gao N, Chen G, Int. J. Refrig., 119, 316, 2020
  45. Eisapour M, Eisapour AH, Hosseini MJ, Talebizadehsardari P, Appl. Energy, 266, 114849, 2020
  46. Sandeep HM, Arunachala UC, Renew. Sust. Energ. Rev., 69, 1218, 2017
  47. Peng Y, Liu WY, Chen W, Wang NL, Int. J. Heat Mass Transf., 71, 79, 2014
  48. Fan F, Qi C, Liu Q, Case. Stud. Therm. Eng., 22, 100761, 2020
  49. Qi C, Wang Y, Tang J, Asia-Pac. J. Chem. Eng., 15(4), e2482, 2020
  50. Yan W, Li C, Ye W, Heat Transf. Asian Res., 48, 2329, 2019
  51. Ma DD, Xia GD, Wang J, Yang YC, Jia YT, Zong LX, Energy Conv. Manag., 152, 157, 2017
  52. Li YC, Kalbasi R, Nguyen Q, Afrand M, Powder Technol., 367, 464, 2020
  53. Rostami S, Zarringhalam M, Alizadeh AA, Toghraie D, Goldanlou AS, J. Mol. Liq., 312, 113130, 2020
  54. Karimipour A, D’Orazio A, Shadloo MS, Physica E., 86, 146, 2017
  55. Kumar KA, Reddy JR, Sugunamma V, Sandeep N, Alex. Eng. J., 57, 435, 2018
  56. Izadi M, Javanahram M, Zadeh SMH, Jing D, Chinese J. Chem. Eng., 28(2), 329, 2020