Issue
Korean Journal of Chemical Engineering,
Vol.38, No.8, 1578-1591, 2021
Pressure drop axial distribution uniformity of the particle bed in the radial bed
In a radial bed, the uniformity of the pressure drop distribution is investigated by Euler single-phase flow and porous media models under different operating mode (CF-U/Z, CP-U/Z), gas flow rate (120-240m3/h), particle diameter ((0.5-3)exp-3 m) and bed voidage (0.3-0.6). According to the nonuniform index Δ, the uniformity relates to these parameters and improves with increasing total pressure drop of particle bed Δps (sum of the pressure drops of particle bed and gas perforation) or decreasing main channel pressure drop Δpg. Comparing the flow fields with/without particles, Δps is approximately equal to the pressure drop of the particle bed with high-porosity Johnson net, which is well calculated by the Ergun equation. Δpg can be calculated by the modified momentum equation containing k. After changing the wall shear stress and gas-solid axial resistance, it is found that the internal generation factors for k include the influence of gas perforation on boundary layer and the existence of gas axial velocity after perforation. Besides, the global/local k hardly changes with the investigated parameters. The local k is a function of axial position or velocity ratio, which changes obviously at the end of the main channel for the existence of a gas stagnation zone.
[References]
  1. Li RJ, Zhu ZB, Chem. React. Eng. Technol., 24, 368, 2008
  2. Fang DY, Zhu ZB, Chem. Eng., 29, 18, 2001
  3. Liu WM, Liu XD, Pet. Chem. Equip. Technol., 27, 56, 2006
  4. Md S, Md H, CMAA, Md M, J. King Saud Univ. - Eng. Sci., 29, 21, 2020
  5. Dong XJ, He YJ, Shen JN, Ma ZF, Chem. Eng. Sci., 175, 306, 2018
  6. Liu WL, Li X, Chem. Eng. Sci., 191, 525, 2018
  7. Chin SY, Hisyam A, Prasetiawan H, Int. J. Chem. React. Eng., 14, 33, 2016
  8. Zhang CF, Zhu ZB, Xu MB, Zhu BC, J. Chem. Ind. Eng., 67 (1979).
  9. Nekhamkina O, Sheintuch M, Chem. Eng. J., 372, 277, 2019
  10. Minocha N, Joshi JB, Int. J. Heat Mass Transf., 151, 119420, 2020
  11. Gilmore N, Hassanzadeh-Barforoushi A, Timchenko V, Menictas C, Appl. Therm. Eng., 183, 116227, 2021
  12. Li RJ, Chen CY, Wu YQ, Zhu ZB, Chem. Eng., 10, 28, 2009
  13. Zhang X, Lu J, Qiu L, Zhang X, Wang X, Chinese J. Chem. Eng., 21, 494, 2013
  14. Li Y, Si H, Wang B, Lu X, Wu XJ, Korean. J. Chem. Eng., 35, 835, 2018
  15. Jin Y, Yu ZQ, Sun ZF, J. Chem. Ind. Eng., 203 (1984).
  16. Song XQ, Wang ZW, Jin Y, J. Chem. Ind. Eng., 43, 268, 1992
  17. Wei H, Wang R, Wang D, Wu T, Liu Y, Zhang S, Chinese J. Process Eng., 20, 1406, 2020
  18. Xu ZG, Yu F, Li RJ, Zhu ZB, Li RJ, Zhang CF, Chinese J. Process Eng., 3, 1, 2003
  19. Zhang XL, Zhao FX, Fan J, Li BZ, J. Northwest Univ.: Nat. Sci. Ed., 26, 235, 1996
  20. Wang H, Gu XY, Chem. Eng., 46, 36, 2018
  21. Mu Z, Wang J, Wang T, Jin Y, Chem. Eng. Process, 42, 409, 2003
  22. Wang JF, Jing S, Wang TF, Jin Y, Ma XQ, Gao LP, J, Chem. Eng. Chin. Univ., 13, 435, 1999
  23. Al-Azawii MMS, Jacobsen D, Bueno P, Anderson R, Appl. Therm. Eng., 180, 115804, 2020
  24. Hong RY, Li HZ, Chinese J. Process Eng., 17, 367, 1996
  25. Zhu ZR, et al., Chinese J. Process Eng., 10.12034/j.issn.1009-606X.220288.
  26. Amiri L, Ghoreishi-Madiseh SA, Hassani FP, Sasmito AP, Powder Technol., 356, 210, 2019
  27. Kareeri AA, Zughbi HD, Al-Ali HH, Ind. Eng. Chem. Res., 45(8), 2862, 2006
  28. He YY, Zhang YX, Chem. React. Eng. Technol., 35, 200, 2019
  29. Zhapbasbayev UK, Ramazanova GI, Kenzhaliev OB, Thermophys Aeromech+, 22, 229 (2015).
  30. Mousazadeh F, Akker HEAVD, Mudde RF, Chem. Eng. J., 207-208, 675, 2012
  31. Xiao FZ, Chen HY, Luo ZH, Can. J. Chem. Eng., 93(6), 1033, 2015
  32. Dai Z, Yu M, Rui D, Zhang X, Zhao Y, Chinese J. Chem. Eng., 26, 484, 2018
  33. Li Y, Wang M, Cao X, Geng Z, Korean J. Chem. Eng., 37(5), 839, 2020
  34. Zhang MH, Dong H, Geng ZF, Powder Technol., 354, 19, 2019
  35. Wang RJ, Fan YP, Lu CX, Ind. Eng. Chem. Res., 56(42), 12203, 2017