Issue
Korean Journal of Chemical Engineering,
Vol.38, No.7, 1460-1468, 2021
A thixotropic fluid flow around two sequentially aligned spheres
We studied the thixotropic-hydrodynamic interaction of particles resulting from a combination of external flow conditions and intrinsic thixotropy of a fluid. As a model system, a low Reynolds number Moore thixotropic fluid flow around two sequentially aligned sphere was simulated using the standard Galerkin finite element method. The drag coefficients of each sphere were used to quantitively characterize the thixotropic-hydrodynamic interaction between the two spheres. First, hydrodynamic interaction change according to the external flow condition was identified at a fixed distance. Subsequently, the parametric analysis was extended to incorporate the effect of the geometrical condition, the sphere-sphere distance parameter. This yields a conceptual map that distinguishes the thixotropic-hydrodynamic interaction into three different types: the geometric hydrodynamic interaction, combination of geometric and local thixotropic interaction, and global thixotropic-hydrodynamic interaction.
[References]
  1. Mewis J, Wagner NJ, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).J. Mewis and N. J. Wagner, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).
  2. Goodeve CF, Trans. Faraday Soc., 35, 342, 1939
  3. Moore F, Trans. J. Br. Ceram. Soc., 58, 470, 1959
  4. Stickel JJ, Phillips RJ, Powell RL, J. Rheol., 50(4), 379, 2006
  5. Goddard JD, J. Non-Newton. Fluid Mech., 14, 141, 1984
  6. Patel PD, Russel WB, Colloids Surf., 31, 355, 1988
  7. Potanin AA, J. Colloid Interface Sci., 145, 140, 1991
  8. Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1, 1997
  9. Lopez-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O, Rheol. Acta, 55(3), 197, 2016
  10. Derksen JJ, Appl. Math. Model., 35, 1656, 2011
  11. Kim J, Park JD, Appl. Math. Model., 82, 848, 2020
  12. Lopez-Aguilar JE, Webster MF, Tamaddon-Jahoromi HR, Manero O, Rheol. Acta, 54, 307, 2014
  13. Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, Lu S, RSC Adv., 10, 19360, 2020
  14. Shikinaka K, Taki N, Kaneda K, Tominaga Y, Chem. Comm., 53, 613, 2016
  15. Balhoff MT, Thompson KE, Chem. Eng. Sci., 61(2), 698, 2006
  16. Balhoff MT, Thompson KE, AIChE J., 50(12), 3034, 2004
  17. Kim KH, Chang HN, Biotechnol. Bioeng., 28, 452, 1986
  18. Engmann J, Burbidge AS, Food Fucnt., 4, 443, 2013
  19. Quemada D, Droz R, Biorhelogy, 20, 635, 1983
  20. de Kretser RG, Boger DV, Rheol. Acta, 40(6), 582, 2001
  21. Zanna N, Tomasini C, Gels, 3, 39, 2017
  22. Mortazavi-Manesh S, Shaw JM, Energy Fuels, 28(2), 972, 2014
  23. Happel J, Brenner H, Low Reynolds number hydrodynamics, Prentice-Hall, London (1965).
  24. Stimson M, Jeffrey GB, Proc. R. Soc. Lond. Series A, 111, 110, 1926
  25. Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret JP, Turcksin B, Wells D, J. Numer. Math., 25, 137, 2017
  26. Taylor C, Hood P, Comput. Fluids, 1, 73, 1973
  27. Brooks AN, Hughes TJR, Comput. Methods in Appl. Mech. Eng., 32, 199, 1982
  28. Geuzaine C, Remacle JF, Int. J. Numer. Eng., 79, 1309, 2009
  29. Saad Y, Schultz MH, SIAM J. Sci. and Stat. Comp., 7, 856, 1986