Issue
Korean Journal of Chemical Engineering,
Vol.38, No.7, 1358-1369, 2021
Computational fluid dynamic analysis of mass transfer and hydrodynamics in a planetary centrifugal bioreactor
Planetary centrifugal bioreactors are promising candidates for cell culture platforms since there is no pollution caused by stirring blades. In this work, the fluid structure in a planetary centrifugal bioreactor was investigated using the computational fluid dynamics (CFD) method. The effects of operating conditions on the oxygen transfer rate (OTR), mixing efficiency and shear environment of the bioreactor were studied with the revolution speed (N) ranging from 60 to 160 rpm and the rotation-to-revolution speed ratio (i) from -2 to 1. The results show that the volumetric mass transfer coefficient (kLa), turbulence intensity, volumetric power consumption, and shear stress increase along with the increase of the revolution and rotation speeds. Furthermore, the rotation in the opposite direction to the revolution is beneficial to the performance of the bioreactor. The planetary centrifugal bioreactor has a higher kLa of 50- 200/h and a lower average shear stress of 0.01-0.05 Pa in comparison with conventional stirred tank bioreactors, which makes it suitable for biological culture of oxygen-consuming cells and shear-sensitive cells.
[References]
  1. Buffo MM, Correa LJ, Esperanca MN, Cruz AJG, Farinas CS, Badino AC, Biochem. Eng. J., 114, 130, 2016
  2. Smetana S, Sandmann M, Rohn S, Pleissner D, Heinz V, Bioresour. Technol., 245, 162, 2017
  3. Verma R, Mehan L, Kumar R, Kumar A, Srivastava A, Biochem. Eng. J., 151, 107312, 2019
  4. Hang H, Guo Y, Liu Y, Bai L, Xia J, Guo M, Hui M, Biotechnol. Bioproc. E., 16, 567, 2011
  5. De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM, Biochem. Eng. J., 17, 217, 2004
  6. Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, et al., J. Biotechnol., 85, 175, 2001
  7. Tanzeglock T, Soos M, Stephanopoulos G, Morbidelli M, Biotechnol. Bioeng., 104(2), 360, 2009
  8. Zupke C, Sinskey AJ, Stephanopoulos G, Appl. Microbiol. Biotechnol., 44(1-2), 27, 1995
  9. Zhong JJ, Korean J. Chem. Eng., 27(4), 1035, 2010
  10. Devi TT, Kumar B, Korean J. Chem. Eng., 31(8), 1339, 2014
  11. Pan A, Xie M, Xia J, Chu J, Zhuang Y, Korean J. Chem. Eng., 35(1), 61, 2018
  12. Riegler P, Chrusciel T, Mayer A, Doll K, Weuster-Botz D, Biochem. Eng. J., 141, 89, 2019
  13. Xia J, Wang Y, Zhang S, Chen N, Yin P, Zhuang Y, Chu J, Biochem. Eng. J., 43, 252, 2009
  14. Liu YQ, Chen JJ, Song J, Hai Z, Lu XH, Ji XY, Wang CS, Bioresour. Technol., 272, 360, 2019
  15. Badino AC, Facciotti MCR, Schmidell W, Biochem. Eng. J., 8, 111, 2001
  16. Li ZJ, Shukla V, Wenger K, Fordyce A, Pedersen AG, Marten M, Biotechnol. Bioeng., 77(6), 601, 2002
  17. Garcia-Ochoa F, Gomez E, Biotechnol. Adv., 27, 153, 2009
  18. Cherguia N, Lateb M, Lacroix E, Dufresne L, Chem. Eng. Res. Des., 102, 100, 2015
  19. Massing U, Cicko S, Ziroli V, J. Control. Release, 125, 16, 2008
  20. Yamaga Y, Kanatani M, Nomura S, J. Prosthodontic Res., 59, 71, 2015
  21. Raza MA, Westwood AVK, Stirling C, Mater. Chem. Phys., 132(1), 63, 2012
  22. Bridgwater J, Particuology, 10, 397, 2012
  23. Son KJ, Korea-Aust. Rheol. J., 30(3), 199, 2018
  24. Weheliye W, Yianneskis M, Ducci A, AIChE J., 59(1), 334, 2013
  25. Ducci A, Weheliye WH, AIChE J., 60(11), 3951, 2014
  26. Rodriguez G, Micheletti M, Ducci A, Chem. Eng. Res. Des., 132, 890, 2018
  27. Lu Z, Wang K, Jin G, Huang K, Huang J, J. Chem. Technol. Biotechnol., 93, 810, 2017
  28. Discacciati M, Hacker D, Quarteroni A, Quinodoz S, Tissot S, Wurm FM, Int. J. Numer. Meth. Fl., 71, 294, 2013
  29. Liu Y, Wang Z, Zhang J, Xia J, Chu J, Zhang S, Zhuang Y, Biochem. Eng. J., 113, 66, 2016
  30. Zhu L, Song B, Wang Z, Monteil DT, Shen X, Hacker DL, De Jesus M, Wurm FM, Biotechnol. Progr., 33, 192, 2017
  31. Mansour M, Khot P, Kovats P, Thevenin D, Zahringer K, Janiga G, Chem. Eng. J., 383, 123121, 2020
  32. Bumrungthaichaichan E, Korean J. Chem. Eng., 33(11), 3050, 2016
  33. He Y, Bayly AE, Hassanpour A, Fairweather M, Muller F, Chem. Eng. Sci., 212, 115333, 2020
  34. Kazemzadeh A, Elias C, Tamer M, Lohi A, Ein-Mozaffari F, Chem. Eng. Sci., 219, 115606, 2020
  35. Auger F, Delaplace G, Bouvier L, Redl A, Andre C, Morel MH, J. Food Eng., 118(4), 350, 2013
  36. Escamilla-Ruiz IA, Sierra-Espinosa FZ, Garcia JC, Valera-Medina A, Carrillo F, Heat Mass Transfer., 53, 2933, 2017
  37. Bumrungthaichaichan E, Wattananusorn S, J. Chin. Inst. Eng., 42, 428, 2019
  38. Buchs J, Maier U, Lotter S, Peter CP, Biochem. Eng. J., 34, 200, 2007
  39. Ducommun P, Ruffieux P, Furter M, Marison M, von Stockar U, J. Biotechnol., 78, 139, 2000
  40. Li C, Xia J, Chu J, Wang Y, Zhuang Y, Zhang S, Biochem. Eng. J., 70, 140, 2013
  41. Barrett TA, Wu A, Zhang H, Levy MS, Lye GJ, Biotechnol. Bioeng., 105(2), 260, 2010
  42. Ruffieux P, von Stockar U, Marison IW, J. Biotechnol., 63, 85, 1998
  43. Kaiser SC, Kraume M, Eibl D, Chem. Ing. Tech., 88(1-2), 77, 2016
  44. Xie MH, Xia JY, Zhou Z, Zhou GZ, Chu J, Zhuang YP, Zhang SL, Noorman H, Chem. Eng. Sci., 106, 144, 2014
  45. Buchs J, Maier U, Milbradt C, Zoels B, Biotechnol. Bioeng., 68(6), 594, 2000
  46. Garciabriones MA, Chalmers JJ, Biotechnol. Bioeng., 44(9), 1089, 1994
  47. ANSYS, ANSYS Fluent Theory Guide, release 19.0 (2017).
  48. Zhu LK, Song BY, Wang ZL, J. Chem. Technol. Biotechnol., 94(7), 2212, 2019
  49. Liu Y, Wang Z, Xia J, Haringa C, Liu Y, Chu Y, Chu J, Zhang Y, Zhang S, Biochem. Eng. J., 114, 209, 2016