Issue
Korean Journal of Chemical Engineering,
Vol.38, No.7, 1317-1332, 2021
A perspective on nonlinear model predictive control
Model predictive control (MPC) is widely accepted as a generic multivariable controller with constraint handling. More recently, MPC has been extended to nonlinear model predictive control (NMPC) in order to realize high-performance control of highly nonlinear processes. In particular, NMPC allows incorporation of detailed process models (validated by off-line analysis) and also integrates with on-line optimization strategies consistent with higherlevel tasks, such as scheduling and planning. NMPC for tracking and so-called “economic” stage costs has been developed, and fundamental stability and robustness properties of NMPC have been analyzed. This perspective provides an overview of NMPC concepts and approaches, as well as the underlying optimization strategies that support the solution strategies. In addition, three challenging process case studies are presented to demonstrate the effectiveness of NMPC.
[References]
  1. Biegler LT, Zavala VM, Comput. Chem. Eng., 33(3), 575, 2009
  2. Biegler LT, Nonlinear programming: Concepts, algorithms, and applications to chemical processes, SIAM, Philadelphia, PA (2010).
  3. Rawlings JB, et al., Model predictive control: Theory, computation and design, Nob Hill Publishing, LLC. (2020).
  4. Pannocchia G, Rawlings J, Wright S, Systems & Control Letters, 60, 747 (2011).
  5. Grune L, Automatica, 49(3), 725, 2013
  6. Chen H, Allgower F, Automatica, 34, 1205, 1998
  7. Griffith DW, Biegler LT, Patwardhan SC, J. Process Control, 70, 109, 2018
  8. Rajhans C, Griffith DW, Patwardhan SC, Biegler LT, Pillai HK, J. Process Control, 83, 30, 2019
  9. Magni L, Scattolini R, in Assessment and future directions of nonlinear model predictive control, Berlin (2007).
  10. Jazwinski A, Stochastic processess and filtering theory, Dover Publications, Mineola, New York (2007).
  11. Ji L, Rawlings JB, Hu W, Wynn A, Diehl M, IEEE Transactions on Automatic Control, 61(11), 3509 (2016).
  12. Rao CV, Rawlings JBand D. Mayne Q, IEEE transactions on Automatic Control, 48(2), 246 (2003).
  13. Zavala VM, Laird CD, Biegler LT, J. Process Control, 18(9), 876, 2008
  14. Wynn A, Vukov M, Diehl M, IEEE Transactions on Automatic Control, 59(8), 2215 (2014).
  15. Lopez-Negrete R, et al., Computer Aided Chem. Eng.: 10th Int. Symp. on Process Systems Eng., 27, 1299 (2009).
  16. Lopez-Negrete R, Patwardhan SC, Biegler LT, J. Process Control, 21(6), 909, 2011
  17. Ascher UM, Petzold LR, Computer methods for ordinary differential equations and differential-algebraic equations, SIAM, Philadelphia (1998).
  18. Conn AR, Scheinberg K, Vicente LN, Introduction to derivative-free optimization, SIAM, Philadelphia, PA, USA (2009).
  19. Nocedal J, Wright S, Numerical optimization, 2nd Ed., SpringerScience+BusinessMedia, LLC, New York (2006).
  20. Betts J, Practical methods for optimal control using nonlinear programming, SIAM, Philadelphia, PA (2001).
  21. Grimm G, Messina M, Tuna S, Teel A, Automatica, 40, 1729, 2004
  22. Yang X, Griffith DW, Biegler LT, Proc. 5th IFAC Conference on Nonlinear Model Predictive Control, IFAC-PapersOnLine, 48(23), 388 (2015).
  23. Fletcher R, Practical methods of optimization, Wiley, New York (1987).
  24. Robinson SM, Math. Oper. Res., 5, 43, 1980
  25. Fiacco A, Introduction to sensitivity and stability analysis in nonlinear programming, Academic Press, New York (1983).
  26. Gauvin J, Mathematical Programming, 12(1), 136, 1977
  27. Janin R, in Sensitivity, stability and parametric analysis, mathematical programming studies, vol. 21, A. Fiacco Ed., Springer Berlin Heidelberg (1984).
  28. Ralph D, Dempe S, Mathematical Programming, 70(1-3), 159, 1995
  29. Kojima M, in Analysis and computation of fixed points, Academic Press, New York (1980).
  30. Kungurtsev V, Jaschke J, SIAM J. Optimization, 27(1), 538, 2017
  31. Jaschke J, Yang X, Biegler LT, J. Process Control, 24(8), 1260, 2014
  32. Forsgren A, Gill P, Wright M, SIAM Rev., 44(4), 525, 2002
  33. Wachter A, Biegler LT, Mathematical Programming, 106(1), 25, 2006
  34. Keerthi S, Gilbert E, IEEE Trans. Auto. Cont., 57, 265, 1988
  35. Jiang Z, Wang Y, Automatica, 37, 857, 2001
  36. Zavala VM, Anitescu M, SIAM J. Control Optim., 48(8), 5444, 2010
  37. Diehl M, Bock H, Schloder J, SIAM J. Control Optimization, 43, 1714, 2005
  38. Kim Y, Thierry DM, Biegler LT, J. Process Control, 96, 82, 2020
  39. Zavala VM, Biegler LT, Automatica, 45(1), 86, 2009
  40. Kim Y, Lin KH, Thierry DM, Biegler LT, ADCHEM IFAC Conference to appear (2021).
  41. Nicholson BL, Lopez-Negrete R, Biegler LT, Comp. Chem. Eng., 70, 149, 2014
  42. Lucia S, Rumschinski P, Krener AJ, Findeisen R, IFAC Papers Online, 48(23), 254, 2015
  43. Lazar M, Tetteroo M, IFAC Papers Online, 51(20), 141, 2018
  44. Rajhans C, Patwardhan S, Pillai H, Proc. 12th IEEE Intl. Conf. Control and Automation, 98 (2016).
  45. Angeli D, Amrit R, Rawlings J, IEEE Trans. Auto. Cont., 57(7), 1615, 2012
  46. Diehl M, Amrit R, Rawlings JB, IEEE Trans. Auto. Cont., 56(3), 703, 2011
  47. Yu MZ, Biegler LT, 10th IFAC International Symposium on Advanced Control of Chemical Processes (ADCHEM 2018), 103 (2018).
  48. Krishnamoorthy D, Biegler LT, Jaschke J, J. Process Control, 92, 108, 2020
  49. Griffith DW, Zavala VM, Biegler LT, J. Process Control, 57, 116, 2017
  50. Srinivasan B, Bonvin D, Visser E, Palanki S, Comput. Chem. Eng., 27(1), 27, 2003
  51. Diehl M, Bjornberg J, IEEE Transactions on Automatic Control, 49(12), 2253 (2004).
  52. Jung TY, et al., IFAC ADCHEM, IFAC-PapersOnLine, 48(8), 164 (2015).
  53. Lucia S, Finkler T, Engell S, J. Process Control, 23(9), 1306, 2013
  54. Yu ZJ, Biegler LT, J. Process Control, 84, 192, 2019
  55. Jang H, Lee JH, Biegler LT, Proceedings of DYCOPS-CAB 2016, IFAC Papers Online, 37 (2016).
  56. Puschke J, Mitsos A, J. Process Control, 69, 6, 2018
  57. Holtorf F, Mitsos A, Biegler LT, J. Process Control, 80, 167, 2019
  58. Thombre M, Yu Z, Jaschke J, Biegler LT, Comput. Chem. Eng., 148, 107269, 2021
  59. Houska B, Ferreau HJ, Diehl M, Optimal Control Appl. Methods, 32, 298, 2011
  60. Andersson J, Gillis J, Horn G, Rawlings JB, Diehl M, Mathematical Programming Computation, 11(1), 1, 2019
  61. Hedengren JD, Shishavan RA, Powell KM, Edgar TF, Comput. Chem. Eng., 70, 133, 2014
  62. Dunning I, Huchette J, Lubin M, SIAM Rev., 59, 295, 2017
  63. Hart W, et al., Pyomo a optimization modeling in python, Springer, New York (2017).
  64. Nicholson BL, Siirola JD, Watson JP, Zavala VM, Biegler LT, Mathematical Programming Computation, 10, 187 (2018).
  65. Pirnay H, Lopez-Negrete R, Biegler LT, Math. Programming Computation, 4, 307 (2012).
  66. Thierry DM, Biegler LT, AIChE J., 65(7), 1, 2019
  67. Lopez-Negrete R, D'Amato FJ, Biegler LT, Kumar A, Comput. Chem. Eng., 51, 55, 2013
  68. Leer R, Self-optimizing control structures for active constraint regions of a sequence of distillation columns, Master’s thesis, Norwegian University of Science and Technology (2012).
  69. Yang X, Advanced-multi-step and economically oriented nonlinear model predictive control, Ph.D. thesis, Carnegie Mellon University (2015).
  70. Nie YS, Biegler LT, Villa CM, Wassick JM, AIChE J., 59(7), 2515, 2013