Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 862-871, 2021
Selective CO2 adsorption using N-rich porous carbon derived from KOH-activated polyaniline
The adsorption of pure gases of carbon dioxide, methane and nitrogen was examined on nitrogen-doped porous carbon (NDC) prepared from polyaniline (PANI) as precursor by chemical activation with KOH (T=650-°, IR=2, t=1 h) to determine the potential for the separation of CO2 gas from flue gas or natural gas. Adsorption equilibrium of all gases was determined in a temperature range of 298-318 K and pressure up to 14 bar. Results demonstrated an excellent CO2 adsorption capacity of 3.09mmoㆍg-1 owing to high CO2 interaction affinity with NDC surface compared to CH4 (1.43mmolㆍg-1) and N2 (0.64mmolㆍg-1) under ambient condition (298 K and 1 bar). The ideal adsorbed solution theory (IAST) was used to determine the adsorption selectivity of NDC for CO2/CH4 and CO2/N2 mixtures at different compositions. The NDC had CO2/CH4 (4.42 and 4.08 for CO2/CH4=10/90 and 50/50, respectively) and CO2/ N2 (12.81 and 12.08 for CO2/N2=15/85 and 50/50, respectively) IAST selectivity at temperature of 298 K and pressure of 1bar. The moderate CO2 adsorption enthalpy indicates that N-doped activated carbon is a promising material in gas separation such as natural gas and flue gas processing.
[References]
  1. Li Y, Xu R, Wang B, Wei J, Wang L, Shen M, Yang J, Nanomaterials, 9, 266, 2019
  2. Modak A, Bhaumik A, J. Solid State Chem., 232, 157, 2015
  3. Vasudevan S, Farooq S, Karimi IA, Saeys M, Quah MCG, Agrawal R, Energy, 103, 709, 2016
  4. Lv D, Chen J, Yang K, Wu H, Chen Y, Duan C, Wu Y, Xiao J, Xi H, Li Z, Chem. Eng. J., 375, 122074, 2019
  5. Xian SK, Peng JJ, Zhang ZJ, Xia QB, Wang HH, Li Z, Chem. Eng. J., 270, 385, 2015
  6. Kim HS, Kang MS, Lee S, Lee YW, Yoo WC, Microporous Mesoporous Mater., 272, 92, 2018
  7. Hoorfar M, Alcheikhhamdon Y, Chen B, Comput. Chem. Eng., 117, 11, 2018
  8. Zia-ul-Mustafa M, Mukhtar H, Nordin N, Mannan H, Mater. Today. Proc., 16, 1976, 2019
  9. Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sust. Energ. Rev., 101, 265, 2019
  10. Zheng WT, Huang K, Dai S, Microporous Mesoporous Mater., 290, 109653, 2019
  11. Peng HL, Zhang JB, Zhang JY, Zhong FY, Wu PK, Huang K, Fan JP, Liu FJ, Chem. Eng. J., 359, 1159, 2019
  12. Chang BB, Shi WW, Yin H, Zhang SR, Yang BC, Chem. Eng. J., 358, 1507, 2019
  13. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A, J. Clean Prod., 230, 783, 2019
  14. Xu M, Chen SJ, Seo DK, Deng SG, Chem. Eng. J., 371, 693, 2019
  15. Jribi S, Miyazaki T, Saha BB, Pal A, Younes MM, Koyama S, Maalej A, Int. J. Heat Mass Transfer, 108, 1941, 2017
  16. Weng X, Cui Y, Shaikhutdinov S, Freund HJ, J. Phys. Chem. C, 123, 1880, 2018
  17. Gomez-Pozuelo G, Sanz-Perez E, Arencibia A, Pizarro P, Sanz R, Serrano D, Microporous Mesoporous Mater., 282, 38, 2019
  18. Kishor R, Ghoshal AK, Chem. Eng. J., 262, 882, 2015
  19. Wang J, Krishna R, Wu XF, Sun YQ, Deng SG, Langmuir, 31(36), 9845, 2015
  20. An LY, Liu SF, Wang LL, Wu JY, Wu ZZ, Ma CD, Yu QK, Hu X, Ind. Eng. Chem. Res., 58(8), 3349, 2019
  21. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma SQ, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ, Nature, 495(7439), 80, 2013
  22. Zhong R, Xu Z, Bi W, Han S, Yu X, Zou R, Inorg. Chim. Acta., 443, 299, 2016
  23. Kacem M, Pellerano M, Delebarre A, Fuel Process. Technol., 138, 271, 2015
  24. Khalili S, Khoshandam B, Jahanshahi M, RSC Adv., 6, 35692, 2016
  25. Singh J, Basu S, Bhunia H, Microporous Mesoporous Mater., 280, 357, 2019
  26. Dassanayake AC, Jaroniec M, Colloids Surf. A: Physicochem. Eng. Asp., 549, 147, 2018
  27. Qezelsefloo E, Khalili S, Jahanshahi M, Peyravi M, Mater. Chem. Phys., 239, 122304, 2020
  28. Li X, Sui ZY, Sun YN, Xiao PW, Wang XY, Han BH, Microporous Mesoporous Mater., 257, 85, 2018
  29. Pallares J, Gonzalez-Cencerrado A, Arauzo I, Biomass Bioenergy, 115, 64, 2018
  30. Apaydın-Varol E, Erulken Y, J. Taiwan Inst. Chem. Eng., 54, 37, 2015
  31. Singh J, Basu S, Bhunia H, Microporous Mesoporous Mater., 280, 357, 2019
  32. Khalili S, Khoshandam B, Jahanshahi M, RSC Adv., 6, 35692, 2016
  33. Ammendola P, Raganati F, Chirone R, Chem. Eng. J., 322, 302, 2017
  34. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. Res. Des., 134, 540, 2018
  35. Myers AL, Prausnitz JM, AIChE J., 11, 121, 1965
  36. Do DD, Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs), World Scientific, London (1998).
  37. Garshasbi V, Jahangiri M, Anbia M, Appl. Surf. Sci., 393, 225, 2017
  38. Zohdi S, Anbia M, Salehi S, Polyhedron, 166, 175, 2019
  39. Heidari A, Younesi H, Rashidi A, Ghoreyshi AA, Chem. Eng. J., 254, 503, 2014
  40. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, Gu J, Compos. Pt. A-Appl. Sci. Manuf., 121, 265, 2019
  41. Daikh S, Zeggai F, Bellil A, Benyoucef A, J. Phys. Chem. Solids, 121, 78, 2018
  42. Janaki V, Vijayaraghavan K, Oh BT, Lee KJ, Muthuchelian K, Ramasamy A, Kamala-Kannan S, Carbohydr. Polym., 90, 1437, 2012
  43. Tofighy MA, Mohammadi T, Chem. Eng. Res. Des., 90(11), 1815, 2012
  44. Stejskal J, Sapurina I, Trchova M, Prog. Polym. Sci., 35, 1420, 2010
  45. Wang J, Krishna R, Wu XF, Sun YQ, Deng SG, Langmuir, 31(36), 9845, 2015
  46. Park J, Attia NF, Jung M, Lee ME, Lee K, Chung J, Oh H, Energy, 158, 9, 2018
  47. Su W, Yao L, Ran M, Sun Y, Liu J, Wang XJ, J. Chem. Eng. Data, 63(8), 2914, 2018
  48. Sawant SY, Somani RS, Bajaj HC, Sharma SS, J. Hazard. Mater., 227, 317, 2012
  49. Barcia PS, Bastin L, Hurtado EJ, Silva JAC, Rodrigues AE, Chen BL, Sep. Sci. Technol., 43(13), 3494, 2008
  50. Wang L, Rao L, Xia B, Wang L, Yue L, Liang Y, Da Costa H, Hu X, Carbon, 130, 31, 2018
  51. Alvarez-Gutierrez N, Gil MV, Rubiera F, Pevida C, Fuel Process. Technol., 142, 361, 2016