Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 833-842, 2021
Facile bioconversion of vegetable food waste into valuable organic acids and green fuels using synthetic microbial consortium
The production of various organic acids from vegetable waste via a facile and cost-effective method utilizing characterized synthetic microbial consortia is described in this study. Five bacterial species with the ability to produce organic acids from vegetable waste biomass were isolated and identified as Lactobacillus casei, Lactobacillus acidophilus, Bacillus megaterium, Pseudomonas florescence and Escherichia coli. Using these cultures, mixed acid fermentation was developed and was efficient in producing various organic acids. The total organic acids accumulated using optimized fermentation conditions was found to be 72.44±3.43 g L-1. The acetic acid was produced as major acid accumulated up to 25.27±1.26 g L-1, followed by lactic acid 19.11±1.73 g L-1. Efforts were also put forth to check the ability to produce methane by the anaerobic digestion process. Up to 14.97mL g-1 biomass methane was produced during the anaerobic digestion process. The technology developed in this study is a carbon-neutral process for managing vegetable food waste with economic benefit. The developed technology will have great economic potential and add value to vegetable food waste management.
[References]
  1. Sauer M, Porro D, Mattanovich D, Branduardi P, Trends Biotechnol., 26, 100, 2008
  2. Sudheer PDVN, Yun J, Chauhan S, Kang TJ, Choi KY, Biotechnol. Bioproc. E., 22, 717, 2017
  3. Sudheer PDVN, Seo D, Kim EJ, Chauhan S, Chunawala JR, Choi KY, Enzyme Microb. Technol., 119, 45, 2018
  4. Agler MT, Wrenn BA, Zinder SH, Angenent LT, Trends Biotechnol., 29, 70, 2011
  5. Murto M, Bjornsson L, Mattiasson B, J. Environ. Manage., 70, 101, 2004
  6. Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z, Bioresour. Technol., 268, 773, 2018
  7. Ayudthaya SPN, van de Weijer AHP, van Gelder AH, Stams AJM, de Vos WM, Plugge CM, Biotechnol. Biofuels, 11, 13, 2018
  8. Lim SJ, Kim BJ, Jeong CM, Choi JDR, Ahn YH, Chang HN, Bioresour. Technol., 99(16), 7866, 2008
  9. Johnson J, Sudheer PDVN, Yang YH, Kim YG, Choi KY, Biotechnol. Bioproc. E., 22, 450, 2017
  10. AOAC; AOAC, Arlington, Virginia. Achi, O. K (1990).
  11. Akerberg C, Zacchi G, Bioresour. Technol., 75(2), 119, 2000
  12. Miller GL, Anal. Chem., 31, 426, 1959
  13. Ma Y, Tie Z, Zhou M, Wang N, Cao X, Xie Y, Anal. Methods, 8, 3839, 2016
  14. John RP, Sukumaran RK, Nampoothiri KM, Pandey A, Biochem. Eng. J., 36, 262, 2007
  15. Shan JJ, Li MW, Allard LF, Lee SS, Flytzani-Stephanopoulos M, Nature, 551(7682), 605, 2017
  16. Lee OK, Hur DH, Nguyen DTN, Lee EY, Biofuel Bioprod Biorefin., 10, 848, 2016
  17. Poe NE, Yu D, Jin Q, Ponder MA, Stewart AC, Ogejo JA, Wang H, Huang H, Waste Manage., 107, 150, 2020
  18. Sudheer PDVN, et al., Biotechnology for biofuels: A sustainable green energy solution, Springer Singapore, Singapore, 61 (2020).
  19. Zamanzadeh M, Hagen LH, Svensson K, Linjordet R, Horn SJ, Sci. Rep., 7, 17664, 2017
  20. Singh CK, Kumar A, Roy SS, Sci. Rep., 8, 2913, 2018
  21. Lu J, Lv Y, Qian X, Jiang Y, Wu M, Zhang W, Zhou J, Dong W, Xin F, Jiang M, Biofuel Bioprod Biorefin., 141, 481, 2020
  22. Che S, Men Y, J. Ind. Microbiol. Biotechnol., 46, 1343, 2019
  23. Liang S, McDonald AG, Coats ER, Waste Manage., 34, 2022, 2014
  24. Atasoy M, Eyice O, Schnurer A, Cetecioglu Z, Bioresour. Technol., 292, 121889, 2019
  25. Li Y, Park SY, Zhu J, Renew. Sust. Energ. Rev., 15, 821, 2011
  26. Alcantara-Hernandez RJ, Tas N, Carlos-Pinedo S, Duran-Moreno A, Falcon LI, Lett. Appl. Microbiol., 64, 438, 2017
  27. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y, Microb. Ecol., 56, 403, 2008
  28. Srivastava SK, Waste Dispos. Sustain. Energy, 2, 85, 2020
  29. Paritosh K, Yadav M, Mathur S, Balan V, Liao W, Pareek N, Vivekanand V, Front. Energy Res., 6, 75, 2018