Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 826-832, 2021
Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria
Inorganic germicides, such as chlorine and its derivatives, are widely used against surface pathogens in various food industries. Due to the potential toxicity of the disinfectants and their by-products, alternative and dosage-efficient methods should be developed to secure food safety and hygiene. Here, we present a natural organic acid-based combinatorial treatment that efficiently inactivated the selected foodborne pathogenic bacterial strains even at low concentration. The individual and/or combinatorial treatments of citric (CA), malic (MA), and phytic acid (PA) inactivated Escherichia coli and Staphylococcus aureus in concentration- and time-dependent fashion. At one selected concentration, the mixture of acids (CA+MA+PA) efficiently reduced E. coli and S. aureus viability by approximately 99.9% within 10 min. The combined application of three organic acids resulted in higher germicidal activity than the sum of the individual treatment inactivation levels, suggesting a synergistic effect among the acids. Our combined acid treatment disrupted bacterial membrane integrity and increased the intracellular reactive oxygen species. The inactivation efficiency of the presented organic acid mixture was also verified for Salmonella Typhimurium, Pseudomonas aeruginosa, and Listeria monocytogenes. In conclusion, we established a composition of natural acid-based mixture, allowing efficient surface disinfection against various Gram-positive and negative pathogenic bacteria through a synergistic effect mechanism.
[References]
  1. Addis M, Sisay D, J. Trop. Dis., 3, 176, 2015
  2. Kaferstein F, Abdussalam M, Bull. World Health Organ., 77, 347, 1999
  3. Meng J, Doyle M, Bull. Inst. Pasteur., 96, 151, 1998
  4. Todd EC, J. Food Prot., 52, 595, 1989
  5. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM, Emerg. Infect. Dis., 17, 7, 2011
  6. Craven P, Baine W, Mackel D, Barker W, Gangarosa E, Goldfield M, Rosenfeld H, Altman R, Lachapelle G, Davies J, The Lancet, 305, 788, 1975
  7. Lyytikainen O, Autio T, Maijala R, Ruutu P, Honkanen-Buzalski T, Miettinen M, Hatakka M, Mikkola J, Anttila VJ, Johansson T, J. Infect. Dis., 181, 1838, 2000
  8. Kerr KG, Snelling AM, J. Hosp. Infect., 73, 338, 2009
  9. Hennekinne JA, De Buyser ML, Dragacci S, FEMS Microbiol., 36, 815, 2012
  10. Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ, Wells JG, Jama, 272, 1349, 1994
  11. Bermudez-Aguirre D, Barbosa-Canovas GV, Food Control, 29, 82, 2013
  12. Park EJ, Alexander E, Taylor GA, Costa R, Kang DH, Lett. Appl. Microbiol., 46, 519, 2008
  13. McDonald S, Lethorn A, Loi C, Joll C, Driessen H, Heitz A, Water Sci. Technol., 60, 2493, 2009
  14. Arora H, LeChevallier MW, Dixon KL, J. Am. Water Works Assoc., 89, 60, 1997
  15. Jeansonne MJ, White RR, J. Endod., 20, 276, 1994
  16. Virto R, Sanz D, Alvarez I, Condon, Raso J, Int. J. Food Microbiol., 103, 251, 2005
  17. Virto R, Sanz D, Alvarez I, Condon S, Raso J, J. Sci. Food Agric., 86, 865, 2006
  18. ParK SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH, J. Food Sci., 76, M293, 2011
  19. Huang Y, Chen H, Food Control, 22, 1178, 2011
  20. Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH, Int. J. Food Microbiol., 145, 287, 2011
  21. Ghate V, Kumar A, Zhou W, Yuk HG, Food Control, 57, 333, 2015
  22. Kim NH, Rhee MS, Appl. Environ. Microbiol., 82, 1040, 2016
  23. Marriott NG, Schilling MW, Gravani RB, Principles of food sanitation, 6th Edn., Springer, New York (2018).
  24. del Campo G, Berregi I, Caracena R, Santos JI, Anal. Chim. Acta, 556, 462, 2006
  25. Hiasa Y, Kitahori Y, Morimoto J, Konishi N, Nakaoka S, Nishioka H, Food Chem. Toxicol., 30, 117, 1992
  26. Torre M, Rodriguez AR, Saura-Calixto F, Crit. Rev. Food Sci. Nutr., 30, 1, 1991
  27. Bari M, Ukuku D, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S, J. Food Prot., 68, 1381, 2005
  28. Cho M, Cates EL, Kim JH, Water Res., 45, 2104, 2011
  29. Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS, Photochem. Photobiol. Sci., 18, 1092, 2019
  30. Cates EL, Cho M, Kim JH, Environ. Sci. Technol., 45, 3680, 2011
  31. Shim J, Seo YS, Oh BT, Cho M, J. Hazard. Mater., 306, 133, 2016
  32. Park HJ, Nguyen TT, Yoon J, Lee C, Environ. Sci. Technol., 46, 11299, 2012
  33. Chudnicka A, Matysik G, J. Ethnopharmacol., 99, 281, 2005
  34. Eswaranandam S, Hettiarachchy N, Johnson M, J. Food Sci., 69, 79, 2004
  35. Ray B, Mark D, Food biopreservatives of microbial origin, CRC press, Boca Raton, FL (2019).
  36. Cho M, Gandhi V, Hwang TM, Lee S, Kim JH, Water Res., 45, 1063, 2011
  37. Berney M, Weilenmann HU, Egli T, Microbiology, 152, 1719, 2006
  38. Breeuwer P, Abee T, Int. J. Food Microbiol., 55, 193, 2000
  39. Seo YS, Choi NR, Kim KM, Cho M, Korean J. Chem. Eng., 36(11), 1799, 2019
  40. Zhou Q, Zhao Y, Dang H, Tang Y, Zhang B, J. Food Prot., 82, 826, 2019
  41. Evans W, McCourtney E, Shrager R, J. Am. Oil Chem. Soc., 59, 189, 1982
  42. Wang Q, de Oliveira EF, Alborzi S, Bastarrachea LJ, Tikekar RV, Sci. Rep., 7, 8325, 2017
  43. King T, Lucchini S, Hinton JC, Gobius K, Appl. Environ. Microbiol., 76, 6514, 2010
  44. Wesche AM, Gurtler JB, Marks BP, Ryser ET, J. Food Prot., 72, 1121, 2009
  45. Buettner GR, Arch. Biochem. Biophys., 300, 535, 1993
  46. Akbas MY, Olmez H, Lett. Appl. Microbiol., 44, 619, 2007
  47. Guan NZ, Liu L, Appl. Microbiol. Biotechnol., 104(1), 51, 2020