Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 771-787, 2021
Combined effects of yaw and tilt angles of separated overfire air on the combustion characteristics in a 1,000 MW coal-fired boiler: A numerical study
Separated overfire air (SOFA) is typically employed in coal-fired boilers with air staged technology to sustain lower NOX emission, and SOFA nozzle angles are crucial adjustment parameters. In this work, the combined effects of SOFA yaw and tilt angles on combustion characteristics were numerically investigated for a 1,000MW dual circle tangentially coal-fired boiler. Numerical results show that the forward increase of the SOFA yaw angle from 0o brings about the enlarged SOFA tangential circle and the gradual appearance of bimodal high-temperature zones at furnace exit. With further tuning SOFA tilt angles vertically, the bimodal high-temperature zones would separate to the two halves of the furnace, inducing a more severe deviation of gas temperature. Besides, the gas residual rotating momentum is strengthened as SOFA yaw angles forward increase, resulting in the enhancement of traction effect in the upper furnace as well as the rise of flame. However, the gas velocity deviation is somewhat eliminated as SOFA rotates reversely. No matter that the SOFA yaw angle increases forward or reversely, the coal burnout would deteriorate with the overly enlarged SOFA tangential circles. Tuning SOFA yaw and tilt angles, respectively, at 5o and 0o can simultaneously guarantee lower CO and NOX emissions.
[References]
  1. Looney B, Statistical review of world energy 2020, London (2020).
  2. Gong J, Jin W, Xu Z, Huang B, Wang J, Wang C, Solar Energy, 199, 206, 2020
  3. International energy outlook 2019, Washington (2019).
  4. Fan W, Chen J, Feng Z, Wu X, Liu S, Fuel, 265, 117007, 2020
  5. Kobayashi H, Hayakawa AA, Somarathne KDKA, Okafor EC, P. Combust. Inst., 37, 109, 2019
  6. Du X, Jin X, Zucker N, Kennedy R, Urpelainen J, J. Environ. Manage., 270, 110862, 2020
  7. Zhu H, Che D, Liu M, He W, Yi G, Yan J, Appl. Therm. Eng., 159, 113801, 2019
  8. Madejski P, Zymelka P, Energy, 197, 117221, 2020
  9. Liu H, Xin N, Cao Q, Sha L, Sun D, Wu S, Korean J. Chem. Eng., 26, 1137, 2010
  10. Zhang XH, Zhou J, Sun SZ, Sun R, Qin M, Fuel, 142, 215, 2015
  11. Xu M, Yuan J, Ding S, Cao H, Comput. Method Appl. M., 155
  12. Yin C, Caillat S, Harion JL, Baudoin B, Perez E, Fuel, 81(8), 997, 2002
  13. Yin CG, Rosendahl L, Condra TJ, Fuel, 82(9), 1127, 2003
  14. Zhou Y, Xu T, Hui S, Zhang M, Appl. Therm. Eng., 29, 732, 2009
  15. Tan P, Fang Q, Zhao S, Yin C, Zhang C, Zhao H, Chen G, Appl. Therm. Eng., 139, 135, 2018
  16. Stupar G, Tucakovic D, Zivanovic T, Stevanovic Z, Belosevic S, Appl. Therm. Eng., 149, 665, 2019
  17. Chen DG, Zhang Z, Li ZS, Lv Z, Cai NS, Combust. Flame, 194, 52, 2018
  18. Kim KM, Ahn SG, Kim GB, Jeon CH, ACS Omega, 4, 2291, 2019
  19. Park HY, Baek SH, Kim HH, Kim YJ, Kim TH, Lim HS, Kang DS, Fuel, 166, 509, 2016
  20. Liu YC, Fan WD, Wu MZ, Appl. Therm. Eng., 110, 553, 2017
  21. Liu YC, Fan WD, Li Y, Appl. Energy, 177, 323, 2016
  22. Tan P, Tian DF, Fang QY, Ma L, Zhang C, Chen G, Zhong LJ, Zhang HG, Fuel, 196, 314, 2017
  23. Tian DF, Zhong LJ, Tan P, Ma L, Fang QY, Zhang C, Zhang DP, Chen G, Fuel Process. Technol., 138, 616, 2015
  24. Wu XF, Fan WD, Liu YC, Bian B, Energy, 173, 1006, 2019
  25. Liu H, Sha L, Xu L, Xu Y, Wu W, Wu S, Numer. Heat Tr. A-Appl., 66, 816, 2014
  26. Sha L, Liu H, Xu LF, Cao QX, Li Q, Wu SH, Energy, 46(1), 364, 2012
  27. Zhao H, Shen J, Li Y, Bentsman J, Control Eng. Pract., 58, 127, 2017
  28. Shih TH, Liou WW, Shabbir A, Yang ZG, Zhu J, Comput. Fluids, 24, 227, 1995
  29. Ranade VV, Gupta DF, Computational modeling of pulverized coal fired boilers, CRC Press, New York (2015).
  30. Kobayashi H, Howard JB, Sarofim AF, Symp. Combust., 16, 411, 1977
  31. Guo YC, Chan CK, Lau KS, Fuel, 82(8), 893, 2003
  32. Sheng CD, Moghtaderi B, Gupta R, Wall TF, Fuel, 83(11-12), 1543, 2004
  33. Sivathanu YR, Faeth GM, Combust. Flame, 82, 211, 1990
  34. Jones WP, Whitelaw JH, Combust. Flame, 48, 1, 1982
  35. Baum MM, Street PJ, Combust. Sci. Technol., 3, 231, 1971
  36. Cheng P, AIAA J., 2, 1662, 1964
  37. Backreedy RI, Fletcher LM, Ma L, Pourkashanian M, Williams A, Combust. Sci. Technol., 178(4), 763, 2006
  38. Hill SC, Smoot LD, Prog. Energy Combust. Sci., 26, 417, 2000
  39. Hanson RK, Salimian S, Combustion chemistry, Springer-Verlag New York Inc., New York (1984).
  40. Warnatz J, NOx formation in high temperature processes, University of Stuttart, Germany (1990).
  41. Westbrook C, Dryer F, Prog. Energy Comb. Sci., 10, 1, 1984
  42. De Soete GG, Symp. Combust., 15, 1093, 1975
  43. Winter F, Wartha C, Loffler G, Hofbauer H, Symp. Combust., 26, 3325, 1996
  44. Levy JM, Chan LK, Sarofima AF, Beer JM, Symp. Combust., 18, 111, 1981
  45. Ansys fluent user’s guide, Fluent Inc. (2012).
  46. Laubscher R, Rousseau P, Int. J. Heat Mass Transfer, 137, 506, 2019
  47. Modlinski N, Fuel Process. Technol., 91(11), 1601, 2010
  48. Li ZX, Miao ZQ, Shen XS, Li JT, Energy, 165, 825, 2018
  49. Li ZX, Miao ZQ, Zhou Y, Wen SR, Li JT, Energy, 152, 804, 2018
  50. Qin M, Su H, Wu W, Liu H, Wu S, Cao Q, Combust. Sci. Technol., 192, 289, 2019
  51. Kutne P, Kapadia BK, Meier W, Aigner M, P. Combust. Inst., 33, 3383, 2011
  52. Mulvihill CR, Petersen EL, Combust. Flame, 213, 291, 2020