Issue
Korean Journal of Chemical Engineering,
Vol.38, No.4, 704-715, 2021
Effect of alumina nanoparticle shape in a triangular porous array of heated periodic pin-fins
Forced convective flow of alumina-water nanofluid with different shapes of nanoparticles through pin-fins of circular cross-section aligned in an equilateral triangular array was analyzed using finite volume methodology. The effect of the shape of alumina nanoparticles on heat transfer across the periodic equilateral triangular array has never been studied in the past. Four different shapes of nanoparticles were considered: spherical, cylindrical, bricks, and platelets. Using non-spherical (cylindrical, bricks, and platelets) nanoparticles resulted in a thinning thermal boundary layer, which resulted in a significant enhancement in heat transfer rates across the array. The mean Nusselt number was augmented by 22% when platelet shaped nanoparticles were utilized in place of spherical shaped nanoparticles. Likewise, the mean Nusselt number was augmented by 17% when cylindrical nanoparticles were used, in place of spherical nanoparticles, at the highest values of other parameters. The increment in effective viscosity of the nanofluid was the highest for platelet-shaped nanoparticles, which resulted in a greater pressure drop compared to other shapes of nanoparticles such as cylindrical, bricks, and spherical for all values of particle concentration. The results in the present article are validated extensively with accessible experimental and numerical studies.
[References]
  1. Mandhani VK, Chhabra RP, Eswaran V, Chem. Eng. Sci., 57(3), 379, 2002
  2. Eidsath A, Carbonell RG, Whitakar S, Herrmann LR, Chem. Eng. Sci., 38, 1803, 1983
  3. Martin AR, Saltiel C, Shyy W, Int. J. Heat Mass Transf., 41, 2383, 1998
  4. Wang CY, Appl. Math. Model., 23, 219, 1999
  5. Mughal W, Xin CL, Zhang Y, Samo I, Abro M, He YD, Chem. Eng. Res. Des., 151, 231, 2019
  6. Rubio-Jimenez CA, Kandlikar SG, Hernandez-Guerrero A, IEEE Trans. Components, Packag. Manuf. Technol., 2, 825 (2012).
  7. Ndao S, Peles Y, Jensen MK, Int. J. Heat Mass Transf., 70, 856, 2014
  8. Saha AK, Chanda S, Int. J. Therm. Sci., 137, 325, 2019
  9. Nguyen CT, Roy G, Gauthier C, Galanis N, Appl. Therm. Eng., 27, 1501, 2007
  10. Ram RP, Bharti RP, Dhiman AK, Can. J. Chem. Eng., 94(7), 1381, 2016
  11. Asif M, Dhiman A, J. Brazilian Soc. Mech. Sci. Eng., 40, 1, 2018
  12. Wung TS, Chen CJ, J. Heat Transfer, 111, 633, 1989
  13. Chen CJ, Wung TS, J. Heat Transfer, 111, 641, 1989
  14. Zkauskas A, Adv. Heat Transf., 18, 87, 1987
  15. Vijaybabu TR, Int. J. Mech. Sci., 166, 105240, 2019
  16. Sheikholeslami M, Rizwan-ul Haq, Shafee A, Li ZX, Elaraki YG, Tlili I, Int. J. Heat Mass Transf., 135, 470, 2019
  17. Pordanjani AH, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S, Energy Conv. Manag., 198, 111886, 2019
  18. Sheikholeslami M, Sadoughi MK, Int. J. Heat Mass Transf., 116, 909, 2018
  19. Sheikholeslami M, Phys. Lett. Sect. A Gen. At. Solid State Phys., 381, 494 (2017).
  20. Mikhailenko SA, Sheremet MA, Oztop HF, Abu-Hamdeh N, Int. J. Mech. Sci., 156, 137, 2019
  21. Selimefendigil F, Oztop HF, Int. J. Mech. Sci., 157, 726, 2019
  22. Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Abu-Hamdeh N, Phys. A Stat. Mech. its Appl., 538, 122479, 2019
  23. Asif M, Chaturvedi R, Dhiman A, J. Therm Sci. Eng. Appl., 13, 041025, 2021
  24. Sheikholeslami M, Farshad SA, Powder Technol., 378, 145, 2021
  25. Selvakumar RD, Dhinakaran S, Int. J. Heat Mass Transf., 106, 816, 2017
  26. Lavasani AM, Bayat H, Energy Conv. Manag., 129, 319, 2016
  27. Brinkman HC, J. Chem. Phys., 20, 571, 1952
  28. Maxwell JC, A treatise on electricity and magnetism, Oxford, England (1873).
  29. Nguyen TK, Saidizad A, Jafaryar M, Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li ZX, Chem. Eng. Res. Des., 146, 478, 2019
  30. Ellahi R, Hassan M, Zeeshan A, Int. J. Heat Mass Transf., 81, 449, 2015
  31. Vanaki SM, Mohammed HA, Abdollahi A, Wahid MA, J. Mol. Liq., 196, 32, 2014
  32. Pravesh R, Dhiman A, Bharti RP, Int. J. Heat Mass Transf., 130, 1141, 2019
  33. Mangrulkar CK, Dhoble AS, Chamoli S, Gupta A, Gawande VB, Renew. Sust. Energ. Rev., 113, 109220, 2019
  34. Buongiorno J, J. Heat Transfer, 128, 240, 2006
  35. Corcione M, Energy Conv. Manag., 52(1), 789, 2011
  36. Timofeeva EV, Routbort JL, Singh D, J. Appl. Phys., 106, 014304, 2009
  37. Lange CF, Durst F, Breuer M, Int. J. Heat Mass Transf., 41(22), 3409, 1998
  38. Maji NC, Chakraborty J, Int. J. Heat Mass Transf., 156, 119709, 2020
  39. Ambreen T, Saleem A, Park CW, Appl. Therm. Eng., 158, 113781, 2019
  40. Murshed SMS, Estelle P, Renew. Sust. Energ. Rev., 76, 1134, 2017