Issue
Korean Journal of Chemical Engineering,
Vol.38, No.3, 617-623, 2021
Photocatalytic degradation characteristics of heterojunction SnO2-CuxO nanopowders of methylene blue under UV light
p-n heterojunction was constructed using p-type Cupric oxide (CuO) and n-type Tin (IV) oxide (SnO2) nanoparticles using chemical synthesis and annealing method. The synthesized SnO2-CuO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), etc. The methylene blue (MB) degradation ability of the synthesized SnO2-CuO nanocomposite was investigated under UV illumination. Compared to the undoped SnO2, the SnO2-CuO p-n heterojunction exhibited enhanced MB degradation capability due the effective separation of electron-holes pair that suppresses the recombination. Based on the experimental results, the charge dynamics and the probable dye degradation mechanism via SnO2-CuO nanoparticles was proposed.
[References]
  1. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Agarwal S, Gupta VK, J. Photochem. Photobiol. B-Biol., 173, 43, 2017
  2. Zheng XJ, Wei YJ, Wei LF, Xie B, Wei MB, Int. J. Hydrog. Energy, 35(21), 11709, 2010
  3. Khairol NF, Sapawe N, Danish M, Mater. Today: Proceedings, 19, 1333, 2019
  4. Shivaramu PD, Patil A, Murthy M, Tubaki S, Shastri M, Manjunath S, Gangaraju V, Rangappa D, Mater. Today: Proceedings, 4, 12314, 2017
  5. Xia HI, Zhuang HS, Zhang T, Xiao DC, J. Environ. Sci., 19, 1141, 2007
  6. Enesca A, Isac L, Duta A, Thin Solid Films, 542, 31, 2013
  7. Bessekhouad Y, Robert D, Weber J, J. Photochem. Photobiol. A-Chem., 163, 569, 2004
  8. Kohtani S, Tomohiro M, Tokumura K, Nakagaki R, Appl. Catal. B: Environ., 58(3-4), 265, 2005
  9. Mamaghani AH, Haghighat F, Lee CS, Appl. Catal. B: Environ., 203, 247, 2017
  10. Zaleska A, Recent Patents on Eng., 2, 157 (2008).
  11. Ahmad M, Ahmed E, Zhang YW, Khalid NR, Xu JF, Ullah M, Hong ZL, Curr. Appl. Phys., 13(4), 697, 2013
  12. Dozzi MV, Selli E, J. Photochem. Photobiol. C: Photochem. Rev., 14, 13 (2013).
  13. Gavade NL, Babar SB, Kadam AN, Gophane AD, Garadkar KM, Ind. Eng. Chem. Res., 56(49), 14489, 2017
  14. Kumar R, Kumar G, Umar A, Mater. Lett., 97, 100, 2013
  15. Lee J, Lee Y, Youn JK, Na HB, Yu T, Kim H, Lee SM, Koo YM, Kwak JH, Park HC, Small, 4, 143, 2008
  16. Lin C, Song Y, Cao L, Chen S, J. Chin. Adv. Mater. Soc., 1, 188, 2013
  17. Saravanan R, Karthikeyan S, Gupta V, Sekaran G, Narayanan V, Stephen A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 91, 2013
  18. Mounkachi O, Salmani E, Lakhal M, Ez-Zahraouy H, Hamedoun M, Benaissa M, Kara A, Ennaoui A, Benyoussef A, Sol. Energy Mater. Sol. Cells, 148, 34, 2016
  19. Babu B, Kadam A, Ravikumar R, Byon C, J. Alloy. Compd., 703, 330, 2017
  20. Leontyev IN, Chernyshov DY, Guterman VE, Pakhomova EV, Guterman AV, Appl. Catal. A: Gen., 357(1), 1, 2009
  21. Thanh NTK, Maclean N, Mahiddine S, Chem. Rev., 114(15), 7610, 2014
  22. Uddin MT, Nicolas Y, Olivier C, Toupance T, Servant L, Muller MM, Kleebe HJ, Ziegler J, Jaegermann W, Inorg. Chem., 51(14), 7764, 2012
  23. Poulston S, Parlett P, Stone P, Bowker M, Surf. Interface Anal., 24, 811, 1996
  24. Chen W, Li Q, Gan H, Zeng W, Adv. Appl. Ceram.., 113, 139, 2014
  25. Chuai M, Chen X, Zhang K, Zhang J, Zhang M, J. Mater. Chem. A, 7, 1160, 2019