Issue
Korean Journal of Chemical Engineering,
Vol.38, No.3, 587-603, 2021
Polystyrene derivative-blended nanocomposite membranes for pervaporation dehydration of hydrazine
Hydrazine is an inorganic chemical that has found use in various applications, such as fuel for jets, rockets, missiles and space shuttles. In the present study, polystyrene (PS) based membranes were developed and explored for hydrazine dehydration by pervaporation process. In addition to the separation performance, the physiochemical and morphological characteristics of the membranes were assessed and correlated to the findings. Investigation of the effects of structural and operating parameters revealed that increase in the membrane thickness enhanced selectivity and separation index (PSI) to 18.79 and 61, respectively. In addition, raising feed temperature from 36 °C to 56 °C caused increments in membrane flux, selectivity and PSI. However, increasing feed flow rate only improved water flux. Membranes exhibited reasonable flux and separation performance for the wide range of studied feed compositions. Two modification methods were employed to tailor the characteristics of PS membranes. Blending PS with acrylonitrile butadiene styrene (ABS) led to 27% improvement in total flux while selectivity and PSI reached to as high as 14.3 and 104.6, respectively. Also, nanocomposite membranes containing 2wt% TiO2 exhibited total flux of 30.9 (g/m2·h) and PSI of 175.9.
[References]
  1. Hosseini SS, Najari S, in Nanostructured polymer membranes, volume 2: Applications, Wiley-Scrivener, Beverly, Massachusetts (2016).
  2. Schumb WC, J. Chem. Educ., 28, 10, 1951
  3. Schmidt EW, Hydrazine and its derivatives: Preparation, properties, applications, John Wiley & Sons, New York (2001).
  4. Dehkordi JA, Hosseini SS, Kundu PK, Tan NR, Chemical Product and Process Modeling, 11, 11 (2016).
  5. Zhang M, Deng L, Xiang D, Cao B, Hosseini SS, Li P, Processes, 7, 51, 2019
  6. Hosseini SS, Dehkordi JA, Kundu PK, Korean J. Chem. Eng., 33(11), 3085, 2016
  7. Sharabati JA, Guclu S, Erkoc-Ilter S, Koseoglu-Imer DY, Unal S, Menceloglu YZ, Ozturk I, Koyuncu I, Sep. Purif. Technol., 212, 438, 2019
  8. Hosseini SS, Palandi MARJ, Mokarinezhad N, Polym. Adv. Technol., 31, 2209, 2020
  9. Xue YL, Lau CH, Cao B, Li P, J. Membr. Sci., 575, 135, 2019
  10. Shahmirzadi MAA, Hosseini SS, Tan NR, Korean J. Chem. Eng., 33(12), 3529, 2016
  11. Xue Y, Huang J, Lau CH, Cao B, Li P, Nat. Commun., 11, 1461, 2020
  12. Urper-Bayram GM, Sayinli B, Sengur-Tasdemir R, Turken T, Pekgenc E, Gunes O, Ates-Genceli E, Tarabara VV, Koyuncu I, J. Appl. Polym. Sci., 136, 48205, 2019
  13. Vedadghavami A, Minooei F, Hosseini SS, Iranian J. Chem. Chem. Eng., 37, 1, 2018
  14. Hosseini SS, Khodadadi H, Bakhshi B, Korean J. Chem. Eng., Accpted, In Press (2021).
  15. Unlu D, Korean J. Chem. Eng., 37(4), 698, 2020
  16. Peng P, Shi B, Lan Y, Sep. Sci. Technol., 46, 234, 2010
  17. Qasim F, Shin JS, Park SJ, Korean J. Chem. Eng., 35(5), 1185, 2018
  18. Unlu D, Macromol. Res., 27(10), 998, 2019
  19. Tamaddondar M, Pahlavanzadeh H, Hosseini SS, Ruan GL, Tan NR, J. Membr. Sci., 472, 91, 2014
  20. Hosseini SS, Pahlavanzadeh H, Tamadondar M, Ir. Chem. Eng. J., 13, 76, 2014
  21. Ravindra R, Sridhar S, Khan A, Rao AK, Polymer, 41(8), 2795, 2000
  22. Satyanarayana SV, Bhattacharya PK, J. Membr. Sci., 238(1-2), 103, 2004
  23. Mandal MK, Dutta S, Bhattacharya PK, Chem. Eng. J., 138(1-3), 10, 2008
  24. Sridhar S, Susheela G, Reddy GJ, Khan AA, Polym. Int., 50, 1156, 2001
  25. Hoda N, Suggala SV, Bhattacharya PK, Comput. Chem. Eng., 30(2), 202, 2005
  26. Sridhar S, Srinivasan T, Virendra U, Khan AA, Chem. Eng. J., 94(1), 51, 2003
  27. Ravindra R, Sridhar S, Khan AA, J. Polym. Sci. B: Polym. Phys., 37(16), 1969, 1999
  28. Sridhar S, Ravindra R, Khan AA, Ind. Eng. Chem. Res., 39(7), 2485, 2000
  29. Sunitha K, Nikhitha P, Satyanarayana SV, Sridhar S, Sep. Sci. Technol., 46(15), 2418, 2011
  30. Pasztor AJ, Landes BG, Karjala PJ, Thermochim. Acta, 177, 187, 1991
  31. Bussi Y, Golan S, Dosoretz CG, Eisen MS, Desalination, 431, 35, 2018
  32. Zhuang GL, Tseng HH, Wey MY, Chem. Eng. Res. Des., 111, 204, 2016
  33. Li Y, Pu H, Cheng J, Du J, Pan H, Chang Z, J. Appl. Polym. Sci., 135, 45917, 2018
  34. Tang Y, Liu Z, Zhao K, J. Appl. Polym. Sci., 136, 47262, 2019
  35. Gawargious Y, Besada A, Talanta, 22, 757, 1975
  36. Liang B, Li Q, Cao B, Li P, Desalination, 433, 132, 2018
  37. Devi DA, Smitha B, Sridhar S, Aminabhavi TM, Sep. Purif. Technol., 51(1), 104, 2006
  38. Rao PS, Smitha B, Sridhar S, Krishnaiah A, Sep. Purif. Technol., 48(3), 244, 2006
  39. Lee KJ, Jho JY, Kang YS, Won J, Dai Y, Robertson GP, Guiver MD, J. Membr. Sci., 223(1-2), 1, 2003
  40. Tarantili PA, Mitsakaki AN, Petoussi MA, Polym. Degrad. Stabil., 95, 405, 2010
  41. Brennan LB, Isaac DH, Arnold JC, J. Appl. Polym. Sci., 86(3), 572, 2002
  42. Keskkula H, Paul DR, McCreedy KM, Henton DE, Polymer, 28, 2063, 1987
  43. Chan MY, Teh PL, Yeoh CK, J. Eng. Sci., 15, 63, 2019
  44. Palandi RJ, Hosseini SS, Ir. Chem. Eng. J., 15, 86, 2016
  45. Hosseini SS, Torbati SF, Shahmirzadi MAA, Tavangar T, Polym. Adv. Technol., 29, 2619, 2018
  46. Hosseini SS, Khodakarami AH, Nxumalo EN, Polym. Eng. Sci., 60(8), 1795, 2020
  47. Shahriari HR, Hosseini SS, Chem. Eng. Process., 147, 107766, 2020
  48. Farha AH, Al Naim AF, Mansour SA, Polymers, 12, 1935, 2020