Issue
Korean Journal of Chemical Engineering,
Vol.38, No.3, 540-551, 2021
Computational fluid dynamics simulation of methanol to olefins in stage circulating fluidized bed riser: Effect of reactor stage parameters on product yields
The risers of a conventional fluidized bed reactor and a stage fluidized bed reactor for the convention of methanol to olefins (MTO) were simulated using computational fluid dynamics. The reaction rates of the MTO reaction were validated to successfully match with the literature experiment. Then, the reactor stage parameters were examined by using the 2k design of the experiment method, including the number of reactor stages, the thickness of the reactor stage, and the wall temperature of the reactor stage. The stage circulating fluidized bed riser decreased the yield of ethene but increased the yield of propene and light olefins. From the obtained solid volume fraction profile, the stage circulating fluidized bed riser could reduce the back-mixing and increase the system turbulence, which promotes the light olefins of the MTO reaction yield. The wall temperature of the reactor stage did not significantly affect the chemical reaction in the circulating fluidized bed riser.
[References]
  1. Chalermsinsuwan B, Samruamphianskun T, Piumsomboon P, Chem. Eng. Res. Des., 92(11), 2479, 2014
  2. Shi YS, Du XZ, Yang LJ, Sun Y, Yang YP, Int. J. Hydrog. Energy, 38(32), 13974, 2013
  3. Ren BF, Li H, Wang D, Wang J, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 48, 921 (2003).
  4. Zhu L, Xie N, Jiang P, Li LL, Chen H, Chem. Eng. Res. Des., 114, 247, 2016
  5. Sun Zhao, Xiang Wenguo, Chen Shiyi, Int. J. Hydrog. Energy, 41(39), 17323, 2016
  6. Ge S, Lou Z, Yang Y, Huang Z, Sun J, Wang J, Yang Y, AIChE J., 66, 1, 2020
  7. Tian P, Wei Y, Ye M, Liu Z, ACS Catal., 5, 1922, 2015
  8. Stocker M, Microporous Mesoporous Mater., 29, 3, 1999
  9. Alvaro-Munoz T, Marquez-Alvarez C, Sastre E, Appl. Catal. A: Gen., 472, 72, 2014
  10. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A, Microporous Mesoporous Mater., 203, 41, 2015
  11. Bleken FL, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B, Appl. Catal. A: Gen., 447-448, 178, 2012
  12. Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B, J. Catal., 265(1), 1, 2009
  13. Wang Q, Wang L, Wang H, Li Z, Wu H, Li G, Zhang X, Zhang S, Asia-Pacific J. Chem. Eng., 6, 596, 2011
  14. Yu Q, Meng X, Liu J, Li C, Cui Q, Microporous Mesoporous Mater., 181, 192, 2013
  15. Sadrameli SM, Fuel, 140, 102, 2015
  16. Sadrameli SM, Fuel, 173, 285, 2016
  17. Awayssa O, Al-Yassir N, Aitani A, Al-Khattaf S, Appl. Catal. A: Gen., 477, 172, 2014
  18. Freiding J, Kraushaar-Czarnetzki B, Appl. Catal. A: Gen., 391(1-2), 254, 2011
  19. Izadbakhsh A, Khorasheh F, Chem. Eng. Sci., 66(23), 6199, 2011
  20. Huang X, Li H, Li H, Xiao WD, Fuel Process. Technol., 150, 104, 2016
  21. Zhuang YQ, Chen XM, Luo ZH, Xiao J, Comput. Chem. Eng., 60, 1, 2014
  22. Lu BN, Luo H, Li H, Wang W, Ye M, Liu ZM, Li JH, Chem. Eng. Sci., 143, 341, 2016
  23. Schoenfelder H, Hinderer J, Werther J, Heil FJ, Chem. Eng. Sci., 49, 5377, 1994
  24. Soundararajan S, Dalai AK, Berruti F, Fuel, 80, 1187, 2001
  25. Gupta R, Kumar V, Srivastava VK, Rev. Chem. Eng., 21(2), 95, 2005
  26. Aramesh R, Akbari V, Shamiri A, Hussain MA, Aghamohammadi N, Measurement, 83, 106, 2016
  27. Chalermsinsuwan B, Kuchonthara P, Piumsomboon P, Chem. Eng. Process., 49(11), 1144, 2010
  28. Zhu YP, Xiao FZ, Luo ZH, Asia-Pacific J. Chem. Eng., 9, 280, 2014
  29. Yang S, Peng L, Liu WM, Zhao H, Lv XL, Li HZ, Zhu QS, Powder Technol., 296, 37, 2016
  30. Zhang YM, Grace JR, Bi XT, Lu CX, Shi MX, Chem. Eng. Sci., 64(14), 3270, 2009
  31. Samruamphianskun T, Piumsomboon P, Chalermsinsuwan B, Chem. Eng. J., 210, 237, 2012
  32. Jiang CW, Zheng ZW, Zhu YP, Luo ZH, Chem. Eng. Res. Des., 90(7), 915, 2012
  33. Wu GP, He Y, Chen W, Chem. Eng. J., 351, 1104, 2018
  34. Chang J, Zhang K, Chen HG, Yang YP, Zhang LM, Chem. Eng. Res. Des., 91(12), 2355, 2013
  35. Zhang JY, Lu BN, Chen FG, Li H, Ye M, Wang W, Chem. Eng. Sci., 189, 212, 2018
  36. Chalermsinsuwan B, Piumsomboon P, Chem. Eng. Sci., 66(22), 5602, 2011
  37. Cloete S, Amini S, Johansen ST, Powder Technol., 205(1-3), 103, 2011
  38. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21, 2013
  39. Lv XL, Li HZ, Zhu QS, Chem. Eng. J., 236, 149, 2014
  40. Zhang YW, Ma Q, Xu X, Xiao YH, Lei FL, Chem. Eng. Process., 98, 71, 2015
  41. Phupanit J, Soanuch C, Korkerd K, Piumsomboon P, Chalermsinsuwan B, Asia-Pacific J. Chem. Eng., 14, 1, 2018
  42. Aghamohammadi S, Haghighi M, Charghand M, Mater. Res. Bull., 50, 462, 2014
  43. Montgomery DC, Design and analysis of experiments, Wiley and Sons, New York (2001).
  44. Karimipour S, Gerspacher R, Gupta R, Spiteri RJ, Fuel, 103, 308, 2013
  45. Kim JH, Rho JH, Proc. IMechE, Part E: Process. Mech. Eng., 231, 914 (2016).
  46. Yurata T, Piumsomboon P, Chalermsinsuwan B, Chem. Eng. Res. Des., 153, 401, 2020
  47. Bos AN, Tromp PJ, Akse HN, Ind. Eng. Chem. Res., 34(11), 3808, 1995
  48. Ye M, Li H, Zhao Y, Zhang T, Liu Z, Adv. Chem. Eng., 47, 279, 2015
  49. Rostami RB, Ghavipour M, Di Z, Wang Y, Behbahani RM, RSC Adv., 5, 81965, 2015
  50. Sedighi M, Bahrami H, Towfighi J, J. Ind. Eng. Chem., 20(5), 3108, 2014