Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 454-460, 2021
Composite solid polymer electrolyte with silica filler for structural supercapacitor applications
Structural supercapacitors are energy storage devices that can function as structural materials. We synthesized composite solid polymer electrolytes (CSPEs) from 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm][OTF]), poly (ethylene glycol) monomethyl ether acrylate (PEGA) and functionalized silica filler. Two types of fumed silica were used: one had an unmodified surface, and the other an organically modified surface. The CSPEs were prepared by adding ionic liquids (IL) to the PEGA and the ratios between PEGA and IL were 7 : 3 and 5 : 5, respectively. The functionalized silica was synthesized by the sol-gel method under acidic conditions using methacryloxypropyl trimethoxysilane (MAPTMS), whereas the effects of silica filler on the electrochemical and thermal properties of CSPEs were investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and differential scanning calorimetry. The ionic conductivity of CSPEs based on PEGA/[OTF]_SiO2 at various concentrations of [EMIm][OTF] was 5.7X10-4 and 4.8 X10-4 S/cm, and their specific capacitance was 10.0 and 9.5 F/g, respectively. With the addition of silica filler, the ionic conductivity and specific capacitance of the synthesized CSPEs were lower than those of the neat CSPEs.
[References]
  1. Simon P, Gogotsi Y, Nat. Mater., 19, 1151, 2020
  2. Cheng JP, Wang WD, Wang XC, Liu F, Chem. Eng. J., 393, 124747, 2020
  3. Conway BE, Electrochemical supercapacitors, Springer Science & Business Media, New York (1999).
  4. Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE, Nano Energy, 52, 441, 2018
  5. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL, Science, 313, 1760, 2006
  6. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653, 2017
  7. Liu T, Zhang F, Song Y, Li Y, J. Mater. Chem. A, 5, 17705, 2017
  8. Xie J, Yang PP, Wang Y, Qi T, Lei Y, Li CM, J. Power Sources, 401, 213, 2018
  9. Long L, Wang S, Xiao M, Meng Y, J. Mater. Chem. A, 4, 10038, 2016
  10. Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G, Small, 14, 180082, 2018
  11. Wang W, Alexandridis P, Polymers, 8, 387, 2016
  12. Lin D, Lin W, Lin Y, Lee HR, Hsu PC, Liu K, Cui Y, Nano Lett., 16, 459, 2016
  13. Zhang J, Guo Z, Zhi X, Tang H, Colloids Surf. A: Physicochem. Eng. Asp., 418, 174, 2013
  14. Mazo AR, Tran TN, Zhang W, Meng Y, Reyhani A, Pascual S, Fontaine L, Qiao GG, Pioge S, Polym. Chem., 11, 5238, 2020
  15. Thomas J, Qidwai S, Pogue W, Pham G, J. Compos. Mater., 47, 5, 2013
  16. Lin Y, Sodano HA, J. Appl. Phys., 106, 114108, 2009
  17. Luo X, Chung DDL, Sci. Technol., 61, 885, 2001
  18. Cho BS, Choi J, Kim KY, Fibers Polym., 18, 1452, 2017
  19. Javaid A, Ho KKC, Bismarck A, Shaffer MSP, Steinke JHG, Greenhalgh ES, J. Compos. Mater., 48, 1409, 2014
  20. Qian H, Kucernak AR, Greenhalgh ES, Bismarck A, Shaffer MSP, ACS Appl. Mater. Interfaces, 5, 6113, 2013
  21. Carlson T, Ordeus D, Wysocki M, Asp LE, Compos. Sci. Technol., 70, 1135, 2010
  22. Carlson T, Ordeus D, Wysocki M, Asp LE, Plast. Rubber Compos., 40, 311, 2011
  23. Carlson T, Asp LE, Compos. Part B Eng., 49, 16, 2013
  24. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y, J. Phys. Chem. C, 113, 13103, 2009
  25. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH, Adv. Funct. Mater., 11(5), 387, 2001