Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 386-399, 2021
Effect of low levels of hydrotropes on micellization of phenothiazine drug
Interactions within mixtures of the phenothiazine drug promethazine hydrochloride (PMH) and cationic hydrotropes ortho-toluidine hydrochloride (o-TDH) and para-toluidine hydrochloride (p-TDH) were investigated at different ratios and temperatures via conductometry to understand various physicochemical properties. Critical micelle concentration (cmc) was less than values of cmcid (cmc in ideal mixed system), indicating significant interaction among the studied constituents in solution mixtures. The cmc of pure PMH was also determined by measuring the surface tension for comparison. A variety of micellization thermodynamic parameters (Gibbs free energy [ΔGm 0 ], change in standard enthalpy [ΔHm 0 ], and change in entropy [ΔSm 0 ]) were computed using conductometry. The micellar mole fraction (X1 Rb, X1 Rod, and X1 id) of hydrotropes estimated by various theoretical models (Rubingh, Rodenas, and Motomura) was assessed, and the results showed a greater contribution of hydrotropes in mixed micelles along with their values increasing via an increase in mole fraction (α1) of hydrotropes (o-TDH/p-TDH). Negative β values suggest extremely favorable attractive interaction/synergism, as declines occurred in the whole quantity of amphiphile used for the desired purpose, leading to a drop of expenditure along with ecological concern. Obtained activity coefficients (f1 and f2) were always beneath unity, meaning nonideality was found between PMH and o-TDH/p-TDH. Like the conductivity method, the UV-visible and FT-IR techniques also demonstrate the interaction between the PMH and o-TDH/p-TDH.
[References]
  1. Shaban SM, Kim DH, Korean J. Chem. Eng., 37(6), 1008, 2020
  2. Rosen MJ, Surfactants and interfacial phenomenon, 3rd Ed., Wiley, New Jersey (2004).
  3. Tahmasebi N, Khalildashti M, Korean J. Chem. Eng., 37(3), 448, 2020
  4. Kim BM, Choi YJ, Choi JH, Shin YH, Lee SH, Korean J. Chem. Eng., 37(1), 1, 2020
  5. Kumar D, Rub MA, J. Phys. Org. Chem., 32, e3918, 2019
  6. Kumar D, Rub MA, J. Mol. Liq., 274, 639, 2019
  7. Vo TK, Kim JS, Korean J. Chem. Eng., 37(3), 571, 2020
  8. Li GH, Cho CG, Korean J. Chem. Eng., 25(6), 1444, 2008
  9. Taboada P, Attwood D, Mosquera V, J. Colloid Interface Sci., 248(1), 158, 2002
  10. Kumar D, Hidayathulla S, Rub MA, J. Mol. Liq., 271, 254, 2018
  11. Srivastava A, Uchiyama H, Wada Y, Hatanaka Y, Shirakawa Y, Kadota K, Tozuka Y, J. Mol. Liq., 277, 349, 2019
  12. Rub MA, Azum N, Khan F, Sehemi GA, Asiri AM, Korean J. Chem. Eng., 32(10), 2142, 2015
  13. Rub MA, Azum N, Khan F, Asiri AM, J. Chem. Thermodyn., 121, 199, 2018
  14. Hatzopoulos MH, Eastoe J, Dowding PJ, Rogers SE, Heenan R, Dyer R, Langmuir, 27(20), 12346, 2011
  15. Balasubramanian D, Srinivas V, Gaikar VG, Sharma MM, J. Phys. Chem., 93, 3865, 1989
  16. Roy BK, Moulik SP, Curr. Sci., 85, 1148, 2003
  17. Srinivas V, Rodley GA, Ravikumar K, Robinson WT, Turnbull MM, Balasubramanian D, Langmuir, 13(12), 3235, 1997
  18. Sachin KM, Karpe SA, Singh M, Bhattara A, R. Soc. Open Sci., 6, 181979, 2019
  19. Schreier S, Malheiros SVP, de Paula E, Biochim. Biophys. Acta, 1508, 210, 2000
  20. Jones M, Leroux J, Eur. J. Pharm. Biopharm., 48, 101, 1999
  21. Torchilin VP, J. Control. Release, 73, 137, 2001
  22. Katzung BG, Basic and clinical pharmacology, 9th Ed., McGraw-Hill, New York (2004).
  23. Mahajan RK, Mahajan S, Bhadani A, Singh S, Phys. Chem. Chem. Phys., 14, 887, 2012
  24. Kumar D, Rub MA, J. Mol. Liq., 238, 389, 2017
  25. Khan ZA, Kamil M, Sulaiman O, Hashim R, Ibrahim MNM, Khanam AJ, Kabir-ud-Din, J. Dispersion Sci. Technol., 32, 1452, 2011
  26. Khan IA, Khanam AJ, Sheikh MS, Kabir-ud-Din, J. Phys. Chem. B, 115(51), 15251, 2011
  27. Landazuri G, Alvarez J, Carvajal F, Macias ER, Gonzalez-Alvarez A, Schulz EP, Frechero M, Rodriguez JL, Minardi R, Schulz PC, Soltero JFA, J. Colloid Interface Sci., 370, 86, 2012
  28. Clint JH, J. Chem. Soc.-Faraday Trans., 71, 1327, 1975
  29. Jafari-Chashmi P, Bagheri A, J. Mol. Liq., 269, 816, 2018
  30. Mata J, Varade D, Bahadur P, Thermochim. Acta, 428(1-2), 147, 2005
  31. Fontan JLL, Costa J, Ruso JM, Prieto G, Sarmiento F, J. Chem. Eng. Data, 49(4), 1008, 2004
  32. Khan F, Sheikh MS, Rub MA, Azum N, Asiri AM, J. Mol. Liq., 222, 1020, 2016
  33. Mahbub S, Rub MA, Hoque MA, Khan MA, J. Phys. Org. Chem., 31, e3872, 2018
  34. Mahbub S, Rub MA, Hoque MA, Khan MA, J. Phys. Org. Chem., 32, e3917, 2019
  35. Asakawa T, Kitano H, Ohta A, Miyagishi S, J. Colloid Interface Sci., 242(2), 284, 2001
  36. Iijima H, Kato T, Soderman O, Langmuir, 16(2), 318, 2000
  37. Gorski N, Kalus J, Langmuir, 17(14), 4211, 2001
  38. Buckingham SA, Garve CJ, Warr GG, J. Phys. Chem., 97, 10236, 1993
  39. Kale KM, Cussler EL, Evans DF, J. Phys. Chem., 84, 593, 1980
  40. Wang YL, Dubin PL, Zhang HW, Langmuir, 17(5), 1670, 2001
  41. Jalali F, Shamsipur M, Alizadeh N, J. Chem. Thermodyn., 32(6), 755, 2000
  42. Rub MA, Azum N, Khan F, Asiri AM, J. Phys. Org. Chem., 30, e3676, 2017
  43. Rub MA, Khan F, Kumar D, Asiri AM, Tenside Surf. Deterg., 52, 236, 2015
  44. Khan ZA, J. Mol. Liq., 281, 333, 2019
  45. Khanam AJ, Sheikh MS, Khan IA, Kabir-ud-Din, J. Ind. Eng. Chem., 20(5), 3453, 2014
  46. Malliaris A, J. Phys. Chem., 91, 6511, 1987
  47. Chauhan S, Pathania L, J. Mol. Liq., 272, 953, 2018
  48. Khan F, Rub MA, Azum N, Asiri AM, J. Phys. Org. Chem., 31, e3812, 2018
  49. Wagle VB, Kothari PS, Gaikar VG, J. Mol. Liq., 133, 68, 2007
  50. Rubingh DN, Mixed Micelle Solution, in: Solution Chemistry of Surfactants, vol. 1, Plenum, New York (1979).
  51. Das S, Ghosh S, Das B, J. Chem. Eng. Data, 63(10), 3784, 2018
  52. Rodenas E, Valiente M, Villafruela MD, J. Phys. Chem. B, 103(21), 4549, 1999
  53. Motomura K, Yamanaka M, Aratono M, Colloid Polym. Sci., 262, 948, 1984
  54. Rub MA, Azum N, Khan SB, Marwani HM, Asiri AM, J. Mol. Liq., 212, 532, 2015
  55. Khan F, Rub MA, Azum N, Kumar D, Asiri AM, J. Solution Chem., 44, 1937, 2015
  56. Singh O, Singla P, Kaur R, Mahajan RK, Colloids Surf. A: Physicochem. Eng. Asp., 523, 43, 2017
  57. Rub MA, Azum N, Asiri AM, J. Chem. Eng. Data, 62(10), 3216, 2017
  58. Kumar D, Azum N, Rub MA, Asiri AM, J. Mol. Liq., 262, 86, 2018
  59. Kumar D, Rub MA, Azum N, Asiri AM, J. Phys. Org. Chem., 31, e3730, 2018
  60. Azum N, Rub MA, Asiri AM, Kashmery HA, J. Mol. Liq., 260, 159, 2018
  61. Rub MA, Khan F, Sheikh MS, Azum N, Asiri AM, J. Chem. Thermodyn., 96, 196, 2016
  62. Aaron JJ, Maafi M, Kersebet C, Parkanyi C, Antonious MS, Motohashi N, J. Photochem. Photobiol. A-Chem., 101, 127, 1996
  63. Mahajan S, Mahajan RK, J. Colloid Interface Sci., 387, 194, 2012
  64. Kumar H, Sharma N, Katal A, J. Mol. Liq., 258, 285, 2018
  65. Gaikar VG, Padalkar KV, Aswal VK, J. Mol. Liq., 138, 155, 2008
  66. Nabi A, Tasneem S, Jesudason CG, Lee VS, Zain SBM, J. Mol. Liq., 256, 100, 2018
  67. Padalkar KV, Gaikar VG, Aswal VK, J. Mol. Liq., 144, 40, 2009