Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 380-385, 2021
Maximization of the power production in LNG cold energy recovery plant via genetic algorithm
This paper presents an optimization model via genetic algorithm (GA) to maximize the power generation potential of a liquefied natural gas (LNG) cold energy recovery plant. LNG releases a large amount of cold energy during vaporization prior to transport for service, and this cold energy can be effectively utilized to generate power using a heat engine. We performed a thermodynamic analysis for a power generation system combining the organic rankine cycle (ORC) driven by LNG exergy and the direct expansion cycle. Both LNG and the working fluid in the combined ORC are light hydrocarbon mixtures, and their physical properties were estimated using the Peng-Robinson equation. We conducted a thorough investigation of the effects that the working fluid composition brought about on the thermal efficiency of the heat engine through an analysis using Aspen HYSYS interfaced with a GA-based Matlab solver. The results showed that optimization of the working fluid composition led to an increase of 58.4% in the performance of the combined ORC in terms of the net work.
[References]
  1. http://www.igemfeds.org/files/yppc/2006%20Gordon%20NG.PDF.
  2. Kim JD, The technology trend of power generation plant utilizing LNG cold energy, KIST, Seoul (2003).
  3. http://www.eng.usf.edu/~hchen4/Organic%20Rankine%20Cycle.htm.
  4. Nouman J, Master of Science Thesis, KTH School of Industrial Engineering and Management, Stockholm (2012).
  5. Shu GQ, Gao YY, Tian H, Wei HQ, Liang XY, Energy, 74, 428, 2014
  6. Garg P, Kumar P, Srinivasan K, Dutta P, Appl. Therm. Eng., 51, 292, 2013
  7. Andreasen JG, Larsen U, Knudsen T, Pierobon L, Haglind F, Energy, 73, 204, 2014
  8. Chys M, van den Broek M, Vanslambrouck B, De Paepe M, Energy, 44(1), 623, 2012
  9. Lecompte S, Ameel B, Ziviani D, van den Broek M, De Paepe M, Energy Conv. Manag., 85, 727, 2014
  10. Zhao L, Bao JJ, Energy Conv. Manag., 83, 203, 2014
  11. Feng YQ, Hung TC, Greg K, Zhang YN, Li BX, Yang JF, Energy Conv. Manag., 106, 859, 2015
  12. Choi IH, Lee S, Seo Y, Chang D, Energy, 61, 179, 2013
  13. Kim KH, Ha JM, Kim KC, Trans. Korean Hydrogen New Energy Soc., 25, 200, 2014
  14. Liu YN, Guo KH, Energy, 36(5), 2828, 2011
  15. Sun H, Zhu H, Liu F, Ding H, Energy, 70, 314, 2014
  16. Alabdulkarem A, Mortazavi A, Hwang Y, Radermacher R, Rogers P, Appl. Therm. Eng., 31, 109, 2011
  17. Baghernejad A, Yaghoubi M, Energy Conv. Manag., 52(5), 2193, 2011
  18. Ghazi M, Ahmadi P, Sotoodeh AF, Taherkhani A, Energy Conv. Manag., 58, 149, 2012
  19. Garcia-Flores BE, et al., Gulf Professional Publishing, Elsevier, New York (2014).
  20. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59, 1976
  21. Tabaei SAR, New Mexico Institute of Mining and Technology, Master’s Dissertation (1988).
  22. Kariznovi M, Nourozieh H, Abedi J, Chem. Eng. Data, 57, 2535, 2012
  23. http://www.e-education.psu.edu/png520/m11_p2.html.
  24. Cho EB, Jeong M, Hwang IJ, Kang CH, Trans. Korean Soc. Mech. Eng. C, 3, 55, 2015
  25. https://en.wikipedia.org/wiki/Natural_selection.
  26. Varela FJ, Bourgine P, Toward a practice of autonomous systems, The MIT Press, London (1994).
  27. https://en.wikipedia.org/wiki/Genetic_algorithm.
  28. Malhotra R, Singh N, Singh Y, Comput. Information Sci., 4, 2, 2011
  29. http://kr.mathworks.com/help/gads/how-the-genetic-algorithm-works.
  30. https://www.alfalaval.com/globalassets/documents/microsites/increaseefficiency/compact-heat-exchangers-improving-heat-recoveryppi00324en.pdf.