Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 326-336, 2021
Synthesis of mesoporous 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent for the effective adsorption of phosphate for water remediation
A 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent (Fh/γ-Al2O3 hybrid adsorbent) precipitated on 10 wt% of γ-Al2O3 seed for the effective adsorption of phosphate in water was synthesized from wastewater containing ferric sulfate. The use of γ-Al2O3 seeds for particle initiation made it possible to prepare larger particles that would allow a liquid to flow through. The synthesized Fh/γ-Al2O3 hybrid adsorbent was characterized by X-ray diffraction, 27Al-MAS NMR, N2 adsorption/desorption, SEM analysis, and EpHL measurements. The adsorption performance of phosphate on the synthesized Fh/γ-Al2O3 hybrid adsorbent was evaluated by batch and column tests at phosphate concentration below 10 ppm, which corresponds to the actual phosphate concentration of natural systems. The adsorption mechanism suggested by the batch test was in good agreement with the Langmuir adsorption model, with a maximum adsorption capacity of 33.2mg/g. On the other hand, the experiment with the column obtained a maximum adsorption capacity of 33.6mg/g for a volumetric flow rate of 10.25 BV/min and an influent phosphate concentration of 4.75 ppm on 0.5 g of adsorbent. The Fh/γ-Al2O3 hybrid adsorbent was shown to have superior adsorption characteristics to those of other previous research in terms of cost, adsorption efficiency, contact time, maximum adsorption capacity, and desorption efficiency of 95% from the experimental condition based on the surface characterization of the adsorbent.
[References]
  1. Carta D, Casula MF, Corrias A, Falqui A, Navarra G, Pinna G, Mater. Chem. Phys., 113(1), 349, 2009
  2. Wang X, Li W, Harrington R, Liu F, Parise JB, Feng X, Sparks DL, Environ. Sci. Technol., 47, 10322, 2013
  3. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB, Science, 316, 1726, 2007
  4. Mendez JC, Hiemstra T, Chem. Geol., 532, 119304, 2020
  5. Peretyazhko TS, Ralston SJ, Sutter B, Ming DW, J. Geophys. Res.-Planets, 125, 1, 2020
  6. Namayandeh A, Kabengi N, J. Colloid Interface Sci., 540, 20, 2019
  7. Rout K, Mohapatra M, Anand S, Dalton Trans., 41, 3302, 2012
  8. Das S, Hendry MJ, Essilfie-Doughan J, Environ. Sci. Technol., 45, 5557, 2011
  9. Liu Z, Lu Y, Duan X, Int. J. Environ. Anal. Chem., https://doi.org/10.1080/03067319.2020.1779246 (2020).
  10. Winstanley EH, Morris K, Abrahamsen-Mills LG, Blackham R, Shaw S, J. Hazard. Mater., 366, 98, 2019
  11. Liang Y, Tian L, Lu Y, Peng L, Wang P, Lin J, Cheng T, Dangab Z, Shi Z, Environ. Sci.: Processes Impacts, 20, 934, 2018
  12. Zhu J, Pigna M, Cozzolino V, Caporale AG, Violante A, Geoderma, 159, 409, 2010
  13. Zhou S, Sato T, Otake T, Minerals, 8, 101, 2018
  14. Hobson AJ, Stewart DI, Bray AW, Mortimer RJG, Mayes WM, Riley AI, Rogerson M, Burke IT, Sci. Total Environ., 643, 1191, 2018
  15. Das S, Essilfie-Dughan J, Hendry MJ, Appl. Geochem., 73, 70, 2018
  16. Kikuchi S, Kashiwabara T, Shibuya T, Takehashi Y, Geochim. Cosmochim. Acta, 251, 1, 2019
  17. Arcibar-Orozco JA, Wallace R, Mitchell JK, Bandosz TJ, Langmuir, 31(9), 2730, 2015
  18. Mathew T, Suzuki K, Ikuta Y, Nagai Y, Takahashi N, Shinjoh H, Angew. Chem.-Int. Edit., 50, 7381, 2011
  19. Osawa H, Lohwacharin J, Takizawa S, Sep. Purif. Technol., 176, 184, 2017
  20. Chiavacci LA, Dahmouche K, Silva NJO, Carlos LD, et al., J. Non-Cryst. Solids, 345, 585, 2004
  21. Wallace AR, Su C, Sun W, Environ. Eng. Sci., 36, 634, 2019
  22. Li G, Chen D, Zhao W, Zhang X, J. Environ. Chem. Eng., 3, 515, 2015
  23. Yang SJ, Zhao YX, Chen RZ, Feng CP, Zhang ZY, Lei ZF, Yang YN, J. Colloid Interface Sci., 396, 197, 2013
  24. Lai L, Xie Q, Chi LN, Gu W, Wu DY, J. Colloid Interface Sci., 465, 76, 2016
  25. Mitrogiannis D, Psychoyou M, Baziotis I, Inglezakis VJ, Koukouzas N, Tsoukalas N, Palles D, Kamitsos E, Oikonomou G, Markou G, Chem. Eng. J., 320, 510, 2017
  26. Li F, Wu W, Li R, Fu X, Appl. Clay Sci., 132, 343, 2016
  27. Ren Z, Shao L, Zhang G, Water Air Soil Pollut., 223, 4221, 2012
  28. Huang X, Foster GD, Honeychuck RV, Schreifels JA, Langmuir, 25(8), 4450, 2009
  29. Chmielewska E, Hodossyova R, Bujdos M, Pol. J. Environ. Stud., 5, 1307, 2013
  30. Kang BJ, J. Adv. Eng. Technol., 4, 475, 2011
  31. Fyte CA, Gobbl GC, Hartmen JS, Kllnowski J, Thomas JM, J. Phys. Chem., 86, 1247, 1982
  32. Komarneni S, Roy R, Roy DM, Cem. Concr. Res., 15, 723, 1985
  33. Lopes TR, Goncalves GR, de Barcellos E, Schettino MA, Cunha AG, Emmerich FG, Freitas JCC, Carbon, 93, 751, 2015
  34. Muller D, Gessner W, Behrens HJ, Scheler G, Chem. Phys. Lett., 79, 59, 1981
  35. Nazar LF, Klein LC, Commun. Am. Ceram. Soc., 71, C-85, 1988
  36. Samain L, Jaworski A, Eden M, Ladd DM, Seo DK, J. Solid State Chem., 217, 1, 2014
  37. Kumar PS, Prot T, Korving L, Keesman KJ, Dugulan I, van Loosdrecht MCM, Witkamp GJ, Chem. Eng. J., 326, 231, 2017
  38. Regalbuto JR, Catalyst preparation science and engineering, CRC Press, New York (2007).
  39. Richards R, Surface and nanomolecular catalysis, CRC Press, New York (2006).
  40. Ghosh A, Paul S, Bhattacharys S, Sasikumar P, Biswas K, Ghosh UC, Environ. Sci. Pollut. Res., 26, 4618, 2019
  41. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  42. Freundlich HMF, Z. Phys. Chem-Frankf., 57A, 385, 1906