Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 292-305, 2021
Effects of catalysts on structural and adsorptive properties of iron oxide-silica nanocomposites
Iron oxide-silica nanocomposites were prepared by sol-gel method using ammonia (NH3), acetic acid (CH3COOH) and hydrochloric acid (HCl) catalysts to generate different pH values for the reaction conditions. As starting precursors, for the silica, respectively, for the iron oxide, tetraethylorthosilicate (TEOS) and iron-III-acetylacetonate were used. The physico-chemical characterization of the materials revealed that the sample obtained with HCl catalyst displays the largest surface area (300m2/g), the most compact network structure, highest surface roughness, biggest crystallite size (14 nm), magnetization (7 emu/g) and superparamagnetic behavior. These materials were tested for adsorption of Cr6+ and Zn2+ from aqueous solution. Sample M-HCl presented the highest surface area and was further used for adsorption of metal ions. Kinetic, thermodynamic and equilibrium adsorption measurements studies were made for Cr6+ and Zn2+. To establish the material behavior from a thermodynamic point of view, temperature and contact time of adsorption process, activation energy, free energy, of standard enthalpy and entropy were calculated. The kinetic behavior was modelled by pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models and the adsorption characteristics were determined by modelling the experimental data with Langmuir, Freundlich and Sips isotherms.
[References]
  1. Tchounwou PB, et al., Clinical and Environmental Toxicology. Experientia Supplementum, Springer, Basel (2012).
  2. Bianchi V, Zantedeschi A, Montaldi A, Majone F, Toxicol. Lett., 23, 51, 1984
  3. Chen SH, Yue QY, Gao BY, Li Q, Xu X, Chem. Eng. J., 168(2), 909, 2011
  4. Shariati S, Khabazipour M, Safa F, J. Porous Mat., 24, 129, 2017
  5. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE, ACS Nano, 10, 2121, 2008
  6. Fu F, Wang Q, J. Environ. Manage., 92, 407, 2011
  7. Dinker MK, Kulkarni PS, J. Chem. Eng. Data, 60(9), 2521, 2015
  8. Martin PP, Agosto MF, Bengoa JF, Fellenz NA, J. Environ. Chem. Eng., 5, 1210, 2017
  9. Almeida JC, Cardoso CED, Tavares DS, Freitas R, Trindade T, Vale C, Pereira E, Trends Anal. Chem., 118, 277, 2019
  10. Biswas K, Bandhoyapadhyay D, Ghosh UC, Adsorption, 13, 83, 2007
  11. Alcala MD, Real C, Solid State Ion., 177(9-10), 955, 2006
  12. Zhu S, Leng YC, Yan MH, Tuo XG, Yang JB, Almasy L, Tian Q, Sun GA, Zou L, Li QT, Courtois J, Zhang H, Appl. Surf. Sci., 447, 381, 2018
  13. Wang WW, Yao JL, Mater. Lett., 64, 840, 2010
  14. Desch RJ, Kim J, Thiel SW, Microporous Mesoporous Mater., 187, 29, 2014
  15. Kishore PNR, Jeevanandam P, J. Alloy. Compd., 522, 51, 2012
  16. Nicola R, Costisor O, Ciopec M, Negrea A, et al., Appl. Sci., 10, 2726, 2020
  17. Zhang X, Cheng T, Chen C, Wang L, Deng Q, Chen G, Ye C, Mater. Res. Express, 7, 085007, 2020
  18. Bashir M, Riaz S, Naseem S, Mater. Today: Proceedings, 2B, 5664, 2015
  19. Ercuta A, IEEE Trans. Instrum. Meas., 69, 1643, 2020
  20. Kuklin AI, Soloviev DV, Rogachev AV, Utrobin PK, et al., J. Phys. Conf. Ser., 291, 012013, 2011
  21. Kuklin AI, Rogov AD, Gorshkova YE, Utrobin PK, et al.,, Phys. Part. Nucl. Lett., 8(2), 200, 2011
  22. Kuklin AI, Islamov AK, Gordeliy VI, Neutron News, 16, 16, 2005
  23. Nyam-Osor M, Soloviov DV, Kovalev YS, Zhigunov A, Rogachev AV, Ivankov OI, Erhan RV, Kuklin AI, J. Phys. Conf. Ser., 351(1), 012024, 2012
  24. Soloviev AG, Solovjeva TM, Ivankov OI, Soloviov DV, Rogachev AV, Kuklin AI, J. Phys. Conf. Ser., 848(1), 012020, 2017
  25. Scherrer P, Nachr. Ges. Wiss. Gottingen, 26, 98, 1918
  26. Dudas Z, Fagadar-Cosma E, Len A, Romanszki L, Almasy L, Vlad-Oros B, Dascalu D, Krajnc A, Kriechbaum M, Kuncser A, Materials, 11(4), 565, 2018
  27. Putz AM, Len A, Ianasi C, Savii C, Almasy L, Korean J. Chem. Eng., 33(3), 749, 2016
  28. Gubanova NN, Baranchikov AY, Kopitsa GP, Almasy L, Angelov B, Yapryntsev AD, Rosta L, Ivanov VK, Ultrason. Sonochem., 24, 230, 2015
  29. Ianasi C, Costisor O, Putz AM, Lazau R, Negrea A, Niznansky D, Sacarescu L, Savii C, Process. Appl. Ceram., 10, 265, 2016
  30. Ercuta A, Chirita M, J. Cryst. Growth, 380, 182, 2013
  31. Handa M, Miyamoto H, Inorg. Chim. Acta., 203, 61, 1992
  32. Yukawa Y, Handa M, Hoshino Y, J. Solution Chem., 24(1), 19, 1995
  33. Colomban P, Slodczyk A, Acta Phys. Pol. A, 116, 7, 2009
  34. Diaz-Acosta I, Baker J, Cordes W, Pulay P, J. Phys. Chem. A, 105(1), 238, 2001
  35. Jayasooriya UA, Peck JNT, Barclay JE, Hardy SM, Chumakov AI, Evans DJ, Pickett CJ, Oganesyan VS, Chem. Phys. Lett., 518, 119, 2011
  36. Pavel I, Szeghalmi A, Moigno D, Cinta S, Kiefer W, Biopolymers, 72(1), 25, 2003
  37. Tirrell TF, Paddock ML, Conlan AR, Smoll EJ, Nechushtai R, Jennings PA, Kim JE, Biochemistry, 48(22), 4747, 2009
  38. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  39. Ianasi C, Piciorus M, Nicola R, Cipec M, Negrea A, Niznansky D, Len A, Almasy L, Putz AM, Korean J. Chem. Eng., 36(5), 688, 2019
  40. Kosmulski M, Surface charging and points of zero charge, engineering and technology, Physical Sciences, CRC Press, Boca Raton (2009).
  41. Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N, J. Polym., 2013, Article ID 798368 (2013).
  42. Ho YS, J. Hazard. Mater., 136(3), 681, 2006
  43. Yurdakoc M, Seki Y, Karahan S, Yurdakoc K, J. Colloid Interface Sci., 286(2), 440, 2005
  44. Zhang Y, Yu F, Cheng W, Wang J, Ma J, J. Chem., 2017, Article ID 1936829 (2017).
  45. Abraham R, Mathew S, Kurian S, Saravanakumar MP, Ealias AM, George G, Ultrason. Sonochem., 49, 175, 2018
  46. Vijayaraghavan K, Mao J, Yun YS, Bioresour. Technol., 99(8), 2864, 2008
  47. Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77, 2011
  48. Duong DD, Adsorption analysis: Equilibria and kinetics, series on chemical engineering, vol. 2, Imperial College Press, London (1998).
  49. Ren ZF, Xu X, Wang X, Gao BY, Yue QY, Song W, Zhang L, Wang HT, J. Colloid Interface Sci., 468, 313, 2016
  50. Handore K, Bhavsar S, Horne A, Chhattise P, Mohite K, Ambekar J, Pande N, Chabukswar V, J. Macromol. Sci. A, 51, 941, 2014
  51. Chowdhury SR, Yanful EK, Pratt AR, J. Hazard. Mater., 235-236, 246, 2012
  52. Kelly A, Knowles KM, Crystallography and crystal defects, 2nd Ed., Wiley, United Kingdom (2012).
  53. Igwe JC, Abia AA, Ecletica Quimica, 32(1), 33, 2007
  54. Kavelin V, Fesenko O, Dubyna H, Vidal C, Klar TA, Hrelescu C, Dolgov L, Nanoscale Res. Lett., 12, 197, 2017
  55. Mohapatra BK, Rao DVR, Z. Anorg. Allg. Chem., 372(3), 332, 1970
  56. Windholz M, The Merck Index, 9th Ed., vol. 802, Merck & Company, Whitehouse Station, NJ, USA (1976).
  57. Ealias AM, Saravanakumar MP, J. Environ. Manage., 206, 215, 2018
  58. Bhatt R, Sreedhar B, Padmaja P, Int. J. Biol. Macromol., 104, 1254, 2017
  59. Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W, J. Hazard. Mater., 150, 446, 2008
  60. Burillo G, Serrano-Gomez J, Bonifacio-Martinez J, J. Mexican Chem. Soc., 57, 80, 2013
  61. Gheju M, Balcu I, Mosoarca G, J. Hazard. Mater., 310, 270, 2016
  62. Aliyu A, Scientific African, 3, e00069, 2019
  63. Mnasri-Ghnimi S, Frini-Srasra N, Appl. Clay Sci., 158, 150, 2018
  64. Renu, Agarwal M, Singh K, J. Water Reuse Desal., 7(4), 387, 2016
  65. Ben Tahar L, Oueslati MH, Abualreish MJA, J. Colloid Interface Sci., 512, 115, 2018
  66. Shi S, Yang J, Liang S, Li M, Gan Q, Xiao K, Hu J, Sci. Total Environ., 628-629, 499, 2018
  67. Li Y, Zhu S, Liu Q, Chen Z, Gu J, Zhu C, Lu T, Zhang D, Ma J, Water Res., 47, 4188, 2013
  68. Wan C, Li J, ACS Sustain. Chem. Eng., 3, 2142, 2015
  69. Srivastava V, Sharma YC, Water Air Soil Pollut., 225, 1, 2013
  70. Hu J, Chen GH, Lo IMC, Water Res., 39, 4528, 2005
  71. Wang P, Lo IMC, Water Res., 43, 3727, 2009
  72. Jiang WJ, Pelaez M, Dionysiou DD, Entezari MH, Tsoutsou D, O'Shea K, Chem. Eng. J., 222, 527, 2013
  73. Mahato BN, Krithiga T, Mater Today: Proc., 17, 303, 2019
  74. Ullah R, Deb BK, Mollah MYA, Defect Diffus. Forum, 353, 33, 2014
  75. Zhang J, Lin S, Han M, Su Q, Xia L, Hui Z, Water, 12, 446, 2020
  76. Wei J, Yang ZX, Sun Y, Wang CK, Fan JL, Kang GY, Zhang R, Dong XY, Li YF, J. Mater. Sci., 54(8), 6709, 2019
  77. Xing M, Xie Q, Li X, Guan T, Wu D, Environ. Technol., 41(5), 658, 2020
  78. Ahmadi A, Heidarzadeh S, Mokhtari AR, Darezereshki E, Harouni HA, J. Geochem. Explor., 147, 151, 2014
  79. Yuan L, Liu Y, Chem. Eng., 432, 215, 2013
  80. Matei E, Predescu AM, Coman G, Balanescu M, Sohaciu M, Predescu C, Favier L, Niculescu M, Environ. Eng. Manag. J., 15, 1019, 2016
  81. Nyamunda BC, Chivhanga T, Guyo U, Chigondo F, J. Eng., 2019, Art. ID. 5656983 (2019).
  82. Roy A, Bhattacharya J, Chem. Eng., 211-212, 493, 2012
  83. Ealias AM, Saravanakumar MP, Environ. Sci. Pollut. Res., 27, 2955, 2020
  84. George G, Saravanakumar MP, Environ. Sci. Pollut. Res., 25, 30236, 2018
  85. Zhang YJ, Ou JL, Duan ZK, Xing ZJ, Wang Y, Colloids Surf. A: Physicochem. Eng. Asp., 481, 108, 2015
  86. Islam MA, Angove MJ, Morton DW, Environ. Nanotechnol. Monit. Manag., 12, 100267, 2019