Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 276-291, 2021
Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption
Adsorbed natural gas (ANG) storage systems are based on nanoporous adsorbents with a tailored porous structure. Activated carbons are among the most promising and widely used candidates for this application, which is explained by the availability and abundance of raw material resources. In the present work, several series of activated carbons prepared from various precursors (coconut shell, peat, polymers, silicon carbide, and mineral coal) by different routes of physical and thermochemical activation were considered in the context of the adsorbed natural gas storage applications. Based on the Dubinin theory of volume filling of micropores and BET method, the porous structure of these adsorbents was evaluated from standard adsorption isotherms. The XRD, SAXS, and SEM measurements revealed variations in the textural and morphological properties of the adsorbents and their dependence on the precursor and synthesis procedure. The pore sizes evaluated from the adsorption and SAXS data were compared. Experimental data on methane adsorption at the temperature of 303 K and pressures of 0.1, 3.5, and 10MPa made it possible to identify the most effective adsorbents. It was shown that the adsorption properties of ACs prepared from peat and mineral coal are determined by surface chemistry inherited from the precursor and activating agent. In contrast, the adsorption performance of ACs from polymer and coconut shell depends solely on the pore volume and pore dimensions. The adsorption effectiveness of each AC varies with pressure as a function of textural properties. Thus, a selection of an optimal adsorbent should be adjusted for thermodynamical coditions of ANG system.
[References]
  1. Grint A, Takagishi ST, Final Report. (1990-1993).
  2. Makal TA, Li JR, Lu W, Zhou HC, Chem. Soc. Rev., 41, 7761, 2012
  3. Tsivadze AY, Aksyutin OE, Ishkov AG, Men'shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA, Russ. Chem. Rev., 87, 950, 2018
  4. Tsivadze AY, Aksyutin OE, Ishkov AG, Knyazeva MK, Solovtsova OV, Men'shchikov IE, Fomkin AA, Shkolin AV, Khozina EV, Grachev VA, Russ. Chem. Rev., 88, 925, 2019
  5. Kumar KV, Preuss K, Titirici MM, Rodriguez-Reinoso F, Chem. Rev., 117(3), 1796, 2017
  6. Rodriguez-Reinoso F, Kaneko K, in Nanoporous materials for gas storage, Springer Nature Singapore Pte Ltd, Singapore (2019).
  7. Fomkin AA, Pribylov AA, Tkachev AG, Memetov NR, et al., Colloid J., 81, 607, 2019
  8. Policicchio A, Maccallini E, Agostino RG, Ciuchi F, Aloise A, Giordano G, Fuel, 104, 813, 2013
  9. Men’shchikov IE, Fomkin AA, Tsivadze AY, Shkolin AV, Strizhenov EM, Khozina EV, Adsorption J., 23, 327, 2017
  10. Tanaka H, El-Merraoui M, Steele WA, Kaneko K, Chem. Phys. Lett., 352(5-6), 334, 2002
  11. Ganji MD, Mirnejad A, Najafi A, Sci. Technol. Adv. Mat., 11, 045001, 2010
  12. Zhu X, Zhao YP, J. Phys. Chem. C, 117, 17737, 2014
  13. Anuchin KV, Fomkin AA, Korotych AP, Tolmachev AM, Prot. Met. Phys. Chem. Surf., 50, 173, 2014
  14. Fenelonov VB, Poristyi uglerod (Porous Carbon). Izd. Inst. Kataliza SO RAN, Novosibirsk (in Russian) (1995).
  15. Men'shchikov IE, Fomkin AA, Shkolin AV, Yu V. Yakovlev, Khozina EV, Russ. Chem. Bull., 67, 1814, 2018
  16. Mahmoud E, Surfaces, 3, 433, 2020
  17. Brunauer S, Emmett PH, Teller E, J. Amer. Chem. Soc., 60, 309, 1938
  18. Thommes M, Kaneko K, Neimark AV, Olivier JP, RodroAguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051, 2015
  19. Dubinin MM, Prog. Surf. Memb. Sci., 9, 1, 1975
  20. Dubinin MM, Carbon, 27, 457, 1989
  21. Blanco AGG, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K, Colloids Surf. A: Physicochem. Eng. Asp., 357, 74, 2010
  22. Ruiz-Rosas R, Garcia-Mateos FJ, Gutierrez MC, Rodriguez-Mirasol J, Cordero T, Front. Mater., 6, 134, 2019
  23. Bernal V, Giraldo L, Moreno-Pirajan JC, J. Carbon Res., 4, 62, 2018
  24. Rodriguez-Reinoso F, University of Alicante, Secretariado de Publicaciones, Alicante (1997).
  25. Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez MT, Carbon, 33, 15, 1995
  26. Molina-Sabio M, Gonzalez MT, Rodriguez-Reinoso F, Sepulveda-Escribano A, Carbon, 34, 505, 1996
  27. MOVE Program Overview. Advanced Research Project Agency, US DOE, 2012.
  28. Hui TS, Zaini MAA, Carbon Lett., 16, 275, 2015
  29. Shirazani MT, Bakhshi H, Rashidi A, Taghizadeh M, J. Environ. Chem. Eng., 8, 103910, 2020
  30. Nasri NS, Sidik HU, Zaini MAA, Rashid NM, Majid ZA, Chelliapan S, Kumar T, Zain MH, Mohsin R, Zaini N, Chem. Eng. Trans., 72, 61, 2019
  31. Aleghafouri A, Mohsen-Nia M, Mohajeri A, Mahdyarfar M, Asghari M, Adsorpt. Sci. Technol., 30, 307, 2012
  32. Bastos-Neto M, Canabrava DV, Torres AEB, Rodriguez-Castellon E, Jimenez-Lopez A, Azevedo DCS, Cavalcante CL, Appl. Surf. Sci., 253(13), 5721, 2007
  33. Strizhenov EM, Fomkin AA, Zherdev AA, Pribylov AA, Prot. Met. Phys. Chem. Surf., 48, 614, 2012
  34. Strizhenov EM, Shkolin AV, Fomkin AA, Pribylov AA, Zherdev AA, Smirnov IA, Prot. Met. Phys. Chem. Surf., 49, 521, 2013
  35. Fomkin AA, Pribylov AA, Murdmaa KO, Pulin AL, Shkolin AV, Men’shchikov IE, Zhedulov SA, Prot. Met. Phys. Chem. Surf., 55, 413, 2019
  36. Sdanghi G, Schaefer S, Maranzana G, Celzard A, Fierro V, Int. J. Hydrogen Ener., In press (Available online 6 November 2019).
  37. Fomkin AA, Men’shchikov IE, Pribylov AA, Gur’yanov VV, Shkolin AV, Zaitsev DS, Tvardovskii AV, Colloid J., 79, 144, 2017
  38. Djeridi W, Ouederni A, Wiersum AD, Llewellyn PL, El Mir L, Mater. Lett., 99, 184, 2013
  39. Kemp KC, Baek SB, Lee WG, Meyyappan M, Kim KS, Nanotechnology, 38, 385602, 2015
  40. Azevedo DC, Araujo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL, Microporous Mesoporous Mater., 100, 361, 2007
  41. Park JE, Lee GB, Hwang SY, Kim JH, Hong BU, Kim H, Kim S, Appl. Sci., 8, 1596, 2018
  42. Mukhin VM, Tarasov AV, Klushin VN, Aktivnye ugli Rossii (Activated Carbons of Russia), Metallurgiya, Moscow (in Russian) (2000).
  43. Mukhin VM, Zubova ID, Gur’yanov VV, Kurilkin AA, Gostev VS, Sorbts. Khrom. Prots., 9, 191, 2009
  44. Gatti G, Errahali M, Tei L, Cossi M, Marchese L, Polymers, 11, 588, 2019
  45. Alvarez-Gutierrez N, Gil MV, Martinez M, Rubiera F, Pevida C, Energies, 9, 189, 2016
  46. Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Energy Fuels, 16, 1321, 2002
  47. Abdulsalam J, Mulopo J, Oboirien B, Bada S, Falcon R, Int. J. Coal Sci. Technol., 6, 459, 2019
  48. Uraki Y, Tamai Y, Ogawa M, Gaman S, Tokurad S, BioResources, 4, 205, 2009
  49. Bergna D, Hu T, Prokkola H, Romar H, Lassi U, Waste Biomass Valorization, 11, 2837, 2020
  50. Yeon SH, Osswald S, Gogotsi Y, Singer JP, Simmons JM, Fischer JE, Lillo-Rodenas MA, Linares-Solanod A, J. Power Sources, 191(2), 560, 2009
  51. Oschatz M, Borchardt L, Senkovska I, Klein N, Leistner M, Kaskel S, Carbon, 56, 139, 2013
  52. Casco ME, Martinez-Escandell M, Gadea-Ramos E, Chem. Phys., 27, 959, 2015
  53. Ramirez AP, Giraldo1 S, Ulloa M, Florez E, Acelas NY, J. Phys.: Conf. Ser., 935, 012012, 2017
  54. Hu Z, Srinivasan MP, Microporous Mesoporous Mater., 43, 267, 2001
  55. Kambarova GB, Sarymsakov S, Solid Fuel Chem., 42, 183, 2008
  56. Lopez-Gonzalez JDD, Martinez-Vilchez F, Rodriguez-Reinoso F, Carbon, 18, 413, 1980
  57. Aygun A, Yenisoy-Karakas S, Duman I, Microporous Mesoporous Mater., 66, 189, 2003
  58. Zhang TY, Walawender WP, Fan LT, Bioresour. Technol., 101(6), 1983, 2010
  59. Tadda MA, Ahsan A, Shitu A, ElSergany M, Arunkumar T, Jose B, Razzaque MA, Daud NNN, J. Adv. Civ. Eng. Pract. Res., 2(1), 7, 2016
  60. Rangari PJ, Chavan P, Int. J. Innov. Res. Sci. Eng. Technol., 6(4), 5829, 2017
  61. Kipling JJ, Wilson RB, Trans. Farad. Soc., 56, 557, 1960
  62. Fedorov NF, et al., Carbon adsorbents and their industrial applications, Nauka, Мoscow (1983).
  63. Fedorov NF, Samonin VV, Russ. J. Appl. Chem., 71, 584, 1998
  64. Shkolin AV, Fomkin AA, Sinitsyn VA, Colloid J., 70, 849, 2008
  65. Sychev VV, et al., Termodinamicheskie svoistva metana (Thermodynamic properties of methane). Izdatelstvo Standartov, Moscow (in Russian) (1979).
  66. Feigin LA, Svergun DI, Structure analysis by small-angle xray and neutron scattering, Plenum Press, New York and London (1989).
  67. Glatter O, Kratky O, Small-angle x-ray scattering, Academic Press, London (1982).
  68. Shiryaev AA, Voloshchuk AM, Volkov VV, Averin AA, Artamonova SD, J. Phys: Conf. Series, 848, 012009, 2017
  69. Guinier A, Ann. Phys., 11, 161, 1939
  70. Men’shchikov IE, Fomkin AA, Tsivadze AY, Shkolin AV, Strizhenov EM, Pulin AL, Prot. Met. Phys. Chem. Surf., 51, 493, 2015
  71. Fomkin AA, Shkolin AV, Men’shchikov IE, Pulin L, Pribylov AA, Smirnov IA, J. Meas. Techn., 58, 1387, 2016
  72. Pribylov AA, Serpinskii VV, Kalashnikov SM, Zeolites, 11, 846, 1991
  73. Men’shchikov IE, Fomkin AA, Arabei AB, Shkolin AV, Strizhenov EM, Prot. Met. Phys. Chem. Surf., 52, 575, 2016
  74. Rahman KA, Loh WS, Ng KS, Procedia Eng., 56, 118, 2013
  75. Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373, 1951
  76. Rutman AM, Skakov YA, Sov. Phys. Cryst., 34, 338, 1989
  77. Fujimoto H, Carbon, 41, 1585, 2003
  78. Dubinin MM, Plavnik GM, Carbon, 6, 183, 1968
  79. Rodriguez-Reinoso F, Almansa C, Molina-Sabio M, J. Phys. Chem. B, 109(43), 20227, 2005