Issue
Korean Journal of Chemical Engineering,
Vol.38, No.2, 264-275, 2021
A breakage model with different liquid properties for pressurized bubble columns in a homogeneous regime
The bubble breakage rate in gas-liquid bubble columns increases for organic liquid and at high pressure. This study developed a breakage model that accounts for different liquid properties in gas-liquid pressurized bubble columns in the homogeneous regime. The Luo (1996), Lehr (2002), and Wang (2003) breakage models, which are widely used for the population balance equation (PBE) of bubble columns, were compared in terms of the total breakage rate, daughter size distribution, and computational time. The model with two empirical equations, modified from Luo’s breakage kernel, was proposed. One represented bubble deformation behavior in different liquid properties in terms of buoyancy, surface tension, and viscosity. The other considered the effect of operating pressure (or gas density) on the breakage rate. The modified model was compared with experimental data and a rigorous breakage model from the literature. The proposed breakage model shows good agreement with experimental data and computational efficiency. This breakage model is applicable for computational fluid dynamics with PBE in pressurized bubble columns with organic liquids.
[References]
  1. Tran BV, Nguyen DD, Ngo SI, Lim YI, Kim B, Lee DH, Go KS, Nho NS, AIChE J., 65, e16685, 2019
  2. Lee J, Yasin M, Park S, Chang IS, Ha KS, Lee EY, Lee J, Kim C, Korean J. Chem. Eng., 32(6), 1060, 2015
  3. Syed AH, Boulet M, Melchiori T, Lavoie JM, Front. Chem., 5, 68, 2017
  4. Lehr F, Millies M, Mewes D, AIChE J., 48(11), 2426, 2002
  5. Wang TF, Wang JF, Jin Y, Chem. Eng. Sci., 58(20), 4629, 2003
  6. Im HJ, Park JI, Lee JW, Korean J. Chem. Eng., 36(10), 1680, 2019
  7. Kumar S, Khanna A, Korean J. Chem. Eng., 31(11), 1964, 2014
  8. Wilkinson PM, Van Schayk A, Spronken JPM, van Dierendonck LL, Chem. Eng. Sci., 48, 1213, 1993
  9. Xing CT, Wang TF, Guo KY, Wang JF, AIChE J., 61(4), 1391, 2015
  10. Rudkevitch D, Macchi A, Can. J. Chem. Eng., 86(3), 293, 2008
  11. Besagni G, Inzoli F, Flow Meas. Instrum., 67, 55, 2019
  12. Calderon CJ, Ancheyta J, Fuel, 216, 852, 2018
  13. Yan P, Jin HB, He GX, Guo XY, Ma L, Yang SH, Zhang RY, Chem. Eng. Sci., 199, 137, 2019
  14. Bae K, Go GS, Noh NS, Lim YI, Bae J, Lee DH, Chem. Eng. J., 386, 121339, 2020
  15. Vik CB, Solsvik J, Hillestad M, Jakobsen HA, Comput. Chem. Eng., 110, 115, 2018
  16. Chen P, Dudukovic MP, Sanyal J, AIChE J., 51(3), 696, 2005
  17. Guo KY, Wang TF, Liu YF, Wang JF, Chem. Eng. J., 329, 116, 2017
  18. Yan P, Jin HB, He GX, Guo XY, Ma L, Yang SH, Zhang RY, Chem. Eng. Res. Des., 154, 47, 2020
  19. Luo H, Svendsen HF, AIChE J., 42(5), 1225, 1996
  20. Zhang H, Yang G, Sayyar A, Wang T, Chem. Eng. J., 386, 121484, 2020
  21. Rollbusch P, Tuinier M, Becker M, Ludwig M, Grunewald M, Franke R, Chem. Eng. Technol., 36(9), 1603, 2013
  22. Yang GY, Guo KY, Wang TF, Chem. Eng. Sci., 170, 251, 2017
  23. Prince MJ, Blanch HW, AIChE J., 36, 1485, 1990
  24. Tsouris C, Tavlarides LL, AIChE J., 40(3), 395, 1994
  25. Solsvik J, Tangen S, Jakobsen HA, Rev. Chem. Eng., 29(5), 241, 2013
  26. Grund G, Schumpe A, Deckwer WD, Chem. Eng. Sci., 47, 3509, 1992
  27. Martinez-Bazan C, Montanes JL, Lasheras JC, J. Fluid Mech., 401, 157, 1999
  28. Maass S, Kraume M, Chem. Eng. Sci., 70, 146, 2012
  29. Andersson R, Andersson B, AIChE J., 52(6), 2020, 2006
  30. Hesketh RP, Etchells AW, Russell TWF, Chem. Eng. Sci., 46, 1, 1991
  31. Rodriguez-Rodriguez J, Martinez-Bazan C, Montanes JL, Meas. Sci. Technol., 14, 1328, 2003
  32. Laurie DP, Math. Comput., 66, 1133, 1997
  33. Shi WB, Yang J, Li G, Yang XG, Zong Y, Cai XY, Chem. Eng. Sci., 187, 391, 2018
  34. Vejrazka J, Zednikova M, Stanovsky P, AIChE J., 64(2), 740, 2018
  35. Razzaghi K, Shahraki F, AIChE J., 62(12), 4508, 2016