Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2351-2358, 2020
Synthesis and characterization of hydroxyethyl cellulose (HEC)-TiO2-based polyurethane bionanocomposites
A novel green series of hydroxyethyl cellulose (HEC) based polyurethane (PUs) prepolymersblended with TiO2 nanoparticles were synthesized by reaction of Isophorone diisocyanate (IPDI), hydroxyl-terminated polybutadiene (HTPB), and hydroxyethyl cellulose (HEC). The chain was further extended with 1,4-butanediol (BDO) to get final HEC based polyurethane bio nanocomposites (FPUNC). A mixture of HEC based polymer and TiO2 nanoparticles was formed in solution polymerization, in which the TiO2 nanoparticles dispersed depending on interaction of TiO2 nanoparticles with polymer chains. The molecular structure of the synthesized PU bionanocomposites was confirmed by FTIR. A series of FPUNCs was prepared by varying the percent composition of the TiO2 nanoparticles into the PU matrix. The morphology of the bionanocomposites was carried out by X-ray diffraction (XRD) studies and scanning electron microscopy (SEM). SEM images verified the good dispersion of TiO2 nanoparticles into PU matrix. The thermal stability of the synthesized FPUNCs was done by thermal gravimetric analysis (TGA), and the FPUNC12 with 5% contents of TiO2 nanoparticles showed better thermal stability. The resultant HEC-TiO2 based FPUNCs material have promising bio-degradable and bio functional materials with good thermal properties and have potential applications in the field of biomaterials.
[References]
  1. Mahmood K, Zia KM, Zuber M, Nazli Z, Rehman S, Zia F, Korean J. Chem. Eng., 33(12), 3316, 2016
  2. Mumtaz F, Zuber M, Zia KM, Jamil T, Hussain R, Korean J. Chem. Eng., 30(12), 2259, 2013
  3. Alizadeh-Sani M, Khezerlou A, Ehsani A, Ind. Crop. Prod., 124, 300, 2018
  4. Noreen A, Zia KM, Zuber M, Tabasum S, Saif MJ, Korean J. Chem. Eng., 33(2), 388, 2016
  5. Zhang Y, Jin Q, Zhao J, Wu C, Fan Q, Wu Q, Eur. Polym. J., 46, 1425, 2010
  6. Dogan SK, Boyacioglu S, Kodal M, Gokce O, Ozkoc G, J. Mech. Behav., Biomed. Mater., 71, 349, 2017
  7. Simmons A, Hyvarinen J, Poole-Warren L, Biomaterials, 27, 4484, 2006
  8. Alekseeva OV, Rodionova AN, Bagrovskaya NA, Agafonov AV, Noskov AV, Cellulose, 24, 1825, 2017
  9. Hubbe MA, Rojas OJ, Lucia LA, BioResources, 10, 6095, 2015
  10. Satish L, Achary K, Kumar A, Barik B, Nayak PB, Tripathy N, Kar JP, Dasha P, Sens. Actuators B-Chem., 272, 100, 2018
  11. Gorna K, Polowinski S, Gogolewski S, J. Polym. Sci. A: Polym. Chem., 40(1), 156, 2002
  12. Zia KM, Zuber M, Bhatti IA, Barikani M, Sheikh MA, Int. J. Biol. Macromol., 44, 23, 2009
  13. Zia F, Zia KM, Nazli ZIH, Tabasum S, Khosa MK, Zuber M, Int. J. Biol. Macromol., 153, 591, 2020
  14. Zia KM, Zuber M, Saif MJ, Jawaid M, Mahmood K, Shahid M, Anjum MN, Ahmad MN, Int. J. Biol. Macromol., 62, 670, 2013
  15. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A, Carbohydr. Polym., 122, 202, 2015
  16. Hubbe MA, Gardner DJ, Shen W, BioResources, 10, 8657, 2015
  17. Zia KM, Mahmood K, Zuber M, Jamil T, Shafiq M, Int. J. Biol. Macromol., 59, 320, 2013
  18. Zuber M, Zia KM, Mahboob S, Hassan M, Bhatti IA, Int. J. Biol. Macromol., 47, 196, 2010
  19. Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN, Int. J. Biol. Macromol., 81, 877, 2015
  20. Youssef AM, El-Sayed SM, Salama HH, El-Sayed HS, Dufresne A, Carbohydr. Polym., 132, 274, 2015
  21. Rehim MHA, Youssef AM, Ghanem A, Polym. Bull., 72(9), 2353, 2015
  22. Youssef AM, Malhat FM, Abd El-Hakim AFA, Polym. Plast. Technol. Eng., 52, 228, 2013
  23. Youssef AM, RSC Adv., 4, 6811, 2014
  24. Hebeish AA, Abdelhady MM, Youssef AM, Carbohydr. Polym., 91, 549, 2013
  25. Kong X, Zhao L, Curtis JM, Carbohydr. Polym., 152, 487, 2016
  26. Zia KM, Zuber M, Barikani M, Jabbar A, Khosa MK, Carbohydr. Polym., 80, 539, 2010
  27. Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jamal MA, Korean J. Chem. Eng., 31(4), 644, 2014
  28. Patterson A, Phys. Rev., 56, 978, 1939
  29. Noreen A, Zia KM, Tabasum S, Aftab W, Shahid M, Zuber M, Int. J. Biol. Macromol., 151, 993, 2020
  30. Mahmood K, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F, Noreen A, Int. J. Biol. Macromol., 105, 1180, 2017
  31. Sun N, Wang T, Yan X, Carbohydr. Polym., 172, 49, 2017
  32. Fleming I, Williams D, Spectroscopic methods in organic chemistry, 7th Ed., Springer International Publishing, Springer Nature Switzerland AG (2019).
  33. Han W, Tu M, Zeng R, Zhao J, Zhou C, Carbohydr. Polym., 90, 1353, 2012
  34. Taheri S, Sadeghi SMM, Appl. Clay Sci., 114, 430, 2015
  35. Javni I, Petrovic ZS, Guo A, Fuller R, J. Appl. Polym. Sci., 77(8), 1723, 2000
  36. Coimbra P, Alves P, Valente TAM, Santos R, Correia IJ, Ferreira P, Int. J. Biol. Macromol., 49, 573, 2011
  37. Wang W, Zhang TJ, Zhang DW, Li HY, Ma YR, Qi LM, Zhou YL, Zhang XX, Talanta, 84, 71, 2011
  38. Safaei M, Taran M, Int. J. Biol. Macromol., 104, 449, 2017
  39. Loganathan S, et al., Thermogravimetric analysis for characterization of nanomaterials at in micro and nano technologies, Elsevier, Amsterdam (2017).