Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2334-2339, 2020
Investigation of fabrication methods for a cathode using a non-precious metal catalyst in polymer electrolyte membrane fuel cell
As the need for fuel cell systems increases, much research is underway to replace platinum catalysts. Therefore, non-precious metal catalysts composed of inexpensive metal have attracted attention. Along with catalyst development, the importance of electrode development is emphasized. In this study, two manufacturing methods using a commercial non-Pt catalyst (FeNC) for cathode were adopted to investigate the effect of the method on the performance of membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cell (PEMFC). Additionally, the effect of different ionomer ratios in the catalyst slurry compositions on the electrode was studied. As a result, the MEA with cathode fabricated by the spray method displayed 2.87-times higher performance than that of MEA with cathode by gas diffusion electrode that is manufactured using the Doctor-blade method. The higher performance of the spray electrode is attributed to the large portions of the pores under 10 nm in the electrode estimated by the mercury intrusion porosimetry. Therefore, it is important to generate large numbers of mesopores to fabricate a high-performance electrode of the non-precious metal catalyst for PEMFC.
[References]
  1. Smith CJ, Forster PM, Allen M, Fuglestvedt J, Millar RJ, Rogelj J, Zickfeld K, Nat. Commun., 10, 101, 2019
  2. Velautham L, Ranney MA, Brow QS, Front. Commnun., 4, 7, 2019
  3. Abe JO, Popoola API, Ajenifuja E, Popoola OM, Int. J. Hydrog. Energy, 44(29), 15072, 2019
  4. Parraa D, Valverde L, Pino FJ, Patel MK, Renew. Sust. Energ. Rev., 101, 279, 2019
  5. Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901, 2013
  6. Bai X, Ambio, 45, 819, 2016
  7. Karapinar D, Tran NH, Giaume D, Rankbar N, Jaouen F, Mougel V, Fontecave M, Sust. Energy Fuels, 3, 1833, 2019
  8. Khaligh A, Li Z, IEEE Transac. Vehicular Tech., 59, 2806, 2010
  9. Reshetenko T, Serov A, Artyushkova K, Matanovic I, Stariha S, Atanassov P, J. Power Sources, 324, 556, 2016
  10. Bernhart W, Riederle S, Yoon M, Aulbur WG, Auto Tech. Rev., 3, 18, 2014
  11. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9, 2005
  12. Yang JW, Yang SW, Chung YJ, Kwon YC, Korean J. Chem. Eng., 37(1), 176, 2020
  13. Huynh TTK, Tran TQN, Yoon HH, Kim WJ, Kim IT, Korean J. Chem. Eng., 36(7), 1193, 2019
  14. Thompson ST, Papageorgopoulos D, Nat. Catal., 2, 558, 2019
  15. Papadias DD, Ahluwalia RK, Kariuki N, Myers D, More KL, Cullen DA, Sneed BT, Neyerlin KC, Mukundan R, Borup RL, J. Electrochem. Soc., 165(6), F3166, 2018
  16. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y, J. Am. Chem. Soc., 130(42), 13818, 2008
  17. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315, 493, 2017
  18. Park HY, Park JH, Kim P, Yoo SJ, Appl. Catal. B: Environ., 225, 854, 2018
  19. Bashyam R, Zelenay P, Nature, 433, 63, 2006
  20. Park HJ, Kim KM, Kim HY, Kim DW, Won YS, Kim SK, Korean J. Chem. Eng., 35(7), 1547, 2018
  21. Choudhary AK, Pramanik H, Korean J. Chem. Eng., 36(10), 1688, 2019
  22. Wu G, Zelenay P, Accounts Chem. Res., 46, 1878, 2013
  23. Kim JH, Sa YJ, Jeong HY, Joo SH, ACS Appl. Mater. Interfaces, 9, 9567, 2017
  24. Sa YJ, Seo DJ, Woo J, Lim JT, Cheon JY, Yang SY, Lee JM, Kang D, Shin TJ, Shin HS, Jeong HY, Kim CS, Kim MG, Kim TY, Joo SH, J. Am. Chem. Soc., 138(45), 15046, 2016
  25. Asset T, Atanassov P, Joule, 4, 33, 2020
  26. Osmieri L, Chemengineering, 3, 16, 2019
  27. Wang YZ, Huang WY, Hsich TH, Jheng LC, Ho KS, Huang SW, Chao L, Polymers, 11, 1368, 2019
  28. Chung Hoon T., Cullen David A., Higgins Drew, Sneed Brian T., Holby Edward F., More Karren L., Zelenay Piotr, Science, 357(6350), 479, 2017
  29. Zhan YF, Zeng HB, Xie FY, Zhang H, Zhang WH, Jin YS, Zhang YL, Chen J, Meng H, J. Power Sources, 431, 31, 2019
  30. Barkholtz HM, Chong L, Kaiser ZB, Xu T, Liu DJ, Int. J. Hydrog. Energy, 41(47), 22598, 2016
  31. Li Y, Liu X, Zheng L, Shang J, Wan X, Hu R, Guo X, Hong S, Shui J, J. Mater. Chem. A, 7, 26147, 2019
  32. Babu SK, Chung HT, Zelenay P, Litster S, ECS Trans., 69, 23, 2015
  33. Workman MJ, Dzara M, Ngo C, Pylypenko S, Serov A, McKinney S, Gordon J, Atanassov P, Artyushkova K, J. Power Sources, 348, 30, 2017
  34. You E, Min M, Jin SA, Kim T, Pak C, J. Electrochem. Soc., 165(6), F3094, 2018
  35. Zhiani M, Majidi S, Silva VB, Gharibi H, Energy, 97, 560, 2016
  36. Yin X, Lin L, Chung HT, Babu SK, Martinez U, Purdy GM, Zelenay P, ECS Trans., 77, 1273, 2017
  37. Lee E, Kim DH, Pak C, Appl. Surf. Sci., 510, 145461, 2020
  38. Yu H, Bonville L, Maric R, J. Electrochem. Soc., 165, J3318, 2018
  39. Li Y, Liu T, Yang W, Zhu Z, Zhai Y, Gu W, Zhu C, Nanoscale, 11, 19506, 2019
  40. He Y, Liu S, Priest C, Shi Q, Wu G, Chem. Soc. Rev., 49, 3484, 2020
  41. Wang YZ, Huang WY, Hsieh TH, Jheng LC, Ho KS, Huang SW, Chao L, Polymers, 11, 1368, 2019
  42. Peng X, Omasta T, Rigdon W, Mustain WE, J. Electrochem. Soc., 163(14), E407, 2016
  43. Xiao L, Yang QD, Wang MJ, Mao ZX, Li J, Wei ZD, J. Mater. Sci., 53(21), 15246, 2018
  44. Ferrero GA, Preuss K, Fuertes AB, Sevilla M, Titirici MM, J. Mater. Chem. A, 4, 2581, 2016
  45. Dhirde AM, Dale NV, Salehfar H, Mann MD, Han TH, IEEE Trans. Energy Convers., 25(3), 778, 2010