Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2317-2325, 2020
Thermally stable amine-functionalized silica sorbents using one-pot synthesis method for CO2 capture at low temperature
Amine-functionalized silica sorbents have been widely investigated for post-combustion CO2 capture at low temperature. In previous studies, amine-functionalized silica sorbents were prepared using a synthetic hierarchically porous silica, which is not commercially available in large quantities, because porous silica support structures strongly influence CO2 capture performance. Here, we propose a feasible and facile fabrication method for amine-functionalized silica sorbents using 3-aminopropyltrimethoxy silane (APTS) and fumed silica (FS), where APTS serves as both an active material and a binder. The APTS-functionalized FS sorbents have large amounts of active amino groups and porous structures and demonstrate good multicycle stability with excellent CO2 capture performance. In addition, cetyltrimethylammonium bromide was found to improve the diffusion pathway of CO2, leading to enhanced CO2 capture capacity because of the suppression of excessive condensation during preparation. Therefore, the APTS-functionalized FS sorbents could be cost- and energy-efficiently prepared using a novel one-pot synthesis method; the resulting sorbents exhibit excellent CO2 capture performance.
[References]
  1. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321, 2005
  2. Hofmann DJ, Butler JH, Tans PP, Atmos. Environ., 43, 2084, 2009
  3. Keith DW, Science, 325, 1654, 2009
  4. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, et al., J. Geophys. Res. Atmos., 111, D05109, 2006
  5. Gillett NP, Arora VK, Flato GM, Scinocca JF, von Salzen K, Geophys. Res. Lett., 39, L01704, 2012
  6. Santer BD, Painter JF, Mears CA, Doutriaux C, Caldwell P, et al., Proc. Natl. Acad. Sci. U.S.A., 110, 26, 2013
  7. Anderson TR, Hawkins E, Jones PD, Endeavour, 40, 178, 2016
  8. Maibach EW, Kreslake JM, Roser-Renouf C, Rosenthal S, Feinberg G, Leiserowitz AA, Ann. Global Health, 81, 396, 2015
  9. Melillo JM, Richmond T, Yohe G, Third National Climate Assessment, U.S. Global Change Research Program (2014).
  10. Schnell JL, Prather MJ, Josse B, Naik V, Horowitz LW, Zeng G, Shindell DT, Faluvegi G, Geophys. Res. Lett., 43, 3509, 2016
  11. Hagewiesche DP, Ashour SS, Alghawas HA, Sandall OC, Chem. Eng. Sci., 50(7), 1071, 1995
  12. Mavroudi M, Kaldis SP, Sakellaropoulos GP, Fuel, 82(15-17), 2153, 2003
  13. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171(3), 760, 2011
  14. Sethia G, Sayari A, Carbon, 93, 68, 2015
  15. Shen CZ, Grande CA, Li P, Yu JG, Rodrigues AE, Chem. Eng. J., 160(2), 398, 2010
  16. Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15(2), 279, 2001
  17. Takamura Y, Narita S, Aoki J, Hironaka S, Uchida S, Sep. Purif. Technol., 24(3), 519, 2001
  18. Thompson JA, Vaughn JT, Brunelli NA, Koros WJ, Jones CW, Nair S, Microporous Mesoporous Mater., 192, 43, 2014
  19. Yong Z, Mata V, Rodrigues AE, J. Chem. Eng. Data, 45, 1093, 2000
  20. Yong Z, Mata V, Rodriguez AE, Ind. Eng. Chem. Res., 40(1), 204, 2001
  21. Yong Z, Mata V, Rodrigues AE, Sep. Purif. Technol., 26(2-3), 195, 2002
  22. Yong Z, Mata VG, Rodrigues AE, Adsorption, 7, 41, 2001
  23. Yong Z, Rodrigues AE, Energy Conv. Manag., 43(14), 1865, 2002
  24. Zou Y, Rodrigues AE, Ads. Sci. Technol., 19, 255, 2001
  25. Chen C, Yang ST, Ahn WS, Ryoo R, Chem. Commun., 24, 3627, 2009
  26. Goeppert A, Meth S, Prakash GS, Olah GA, Energy Environ. Sci., 3, 1949, 2010
  27. Qi G, Wang Y, Estevez L, Switzer AK, Duan X, Yang X, Giannelis EP, Chem. Mater., 22, 2693, 2010
  28. Wang J, Long D, Zhou H, Chen Q, Liu X, Ling L, Energy Environ. Sci., 5, 5742, 2012
  29. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW, Energy Fuels, 16(6), 1463, 2002
  30. Xu XC, Song CS, Miller BG, Scaroni AW, Ind. Eng. Chem. Res., 44(21), 8113, 2005
  31. Chang ACC, Chuang SSC, Gray M, Soong Y, Energy Fuels, 17(2), 468, 2003
  32. Delaney SW, Knowles GP, Chaffee AL, Fuel Chem. Div. Preprints, 47, 65, 2002
  33. Hahn MW, Steib M, Jentys A, Lercher JA, J. Phys. Chem. C, 119, 4126, 2015
  34. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 45(9), 3248, 2006
  35. Harlick PJE, Sayari A, Ind. Eng. Chem. Res., 46(2), 446, 2007
  36. Knowles GP, Delaney SW, Chaffee AL, Ind. Eng. Chem. Res., 45(8), 2626, 2006
  37. Leal O, Bolivar C, Ovalles C, Garcia JJ, Espidel Y, Inorg. Chim. Acta., 240, 183, 1995
  38. Chen C, Kim J, Ahn WS, Korean J. Chem. Eng., 31(11), 1919, 2014
  39. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O'Hare D, Zhong Z, Energy Environ. Sci., 7, 3478, 2014
  40. Choi W, Min K, Kim C, Ko YS, Jeon JW, Seo H, Park YK, Choi M, Nat. Commun., 7, 12640, 2016
  41. Quang Dang Viet, Hatton T. Alan, Abu-Zahra Mohammad R. M., Ind. Eng. Chem. Res., 55(29), 7842, 2016
  42. Rahman I, Jafarzadeh M, Sipaut C, Ceram. Int., 35, 1883, 2009
  43. Sing KS, J. Porous Mater., 2, 5, 1995
  44. Mittal N, Samanta A, Sarkar P, Gupta R, Energy Sci. Eng., 3, 207, 2015
  45. Kim HJ, Chaikittisilp W, Jang KS, Didas SA, Johnson JR, Koros WJ, Nair S, Jones CW, Ind. Eng. Chem. Res., 54, 4407, 2014