Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2295-2306, 2020
Preparation, optimization, and in-vitro evaluation of aspirin/PEG solid dispersions using subcritical CO2 by response surface methodology
This study reports on the preparation, optimization, and in vitro evaluation of micronized solid dispersions containing Polyethylene Glycol 4000 (PEG4000) and aspirin to increase the dissolution rate of aspirin in water. To achieve this goal, aspirin/PEG4000 composites were prepared and characterized by applying a solid dispersion method with subcritical CO2. Employing response surface methodology (RSM) using the Box-Behnken design (BBD), the effects of different variables including pressure, concentration, drug/polymer ratio, and their interactions on drug content and yield of production were investigated. The closeness between the measured and predicted responses with R2>0.99 demonstrated the validity of the statistical analysis. The optimal formulation obtained from RSM is at a pressure of 63.5 bar, concentration of 0.17 g/gSolution, and drug/polymer ratio of 1. Under the optimized condition, the yield of production and drug content % reached 91.5% and 54.5%, respectively. Dissolution tests carried out in buffer phosphate solution at pH 7.4 showed a significant improvement in dissolution rate, with a rate approximately seven times faster than unprocessed aspirin. In addition, the in vitro drug release profile of produced composites showed an initial burst release of more than 80% in the first 2min.
[References]
  1. Jafari D, Yarnezhad I, Nowee SM, Baghban SHN, Ind. Eng. Chem. Res., 54(14), 3685, 2015
  2. Phillips J, Physica A, 415, 538, 2014
  3. Shi Y, Wan A, Shi Y, Zhang Y, Chen Y, Biomed. Res. Int., 2014, 6, 2014
  4. Deshpande KB, Mastiholimath VS, Int. J. Pharm. Res., 5, 12, 2013
  5. Badens E, Majerik V, Horvath G, Szokonya L, Bosc N, Teillaud E, Charbit G, Int. J. Pharm., 377, 25, 2009
  6. Rahimi M, Valeh-e-Sheyda P, Rashidi H, Korean J. Chem. Eng., 34(11), 3017, 2017
  7. Yuvaraja K, Kumar Das S, Khanam J, Korean J. Chem. Eng., 32(1), 132, 2015
  8. Kwon KR, Yeo SD, Korean J. Chem. Eng., 35(9), 1860, 2018
  9. Zabihi F, Yang M, Leng YP, Zhao YP, J. Supercrit. Fluids, 99, 15, 2015
  10. Diaf K, El Bahri Z, Chafi N, Belarbi L, Mesli A, Chem. Paper, 66, 779, 2012
  11. Sadeghi F, Ashofteh M, Homayouni A, Abbaspour M, Nokhodchi A, Garekani HA, Colloids Surf. B: Biointerfaces, 147, 258, 2016
  12. Bandari S, Jadav S, Eedara BB, Jukanti R, Veerareddy PR, Korean J. Chem. Eng., 30(1), 238, 2013
  13. Rossmann M, Braeuer A, Schluecker E, J. Supercrit. Fluids, 89, 16, 2014
  14. Yang G, Zhao Y, Feng N, Zhang Y, Liu Y, Dang B, Asian J. Pharm. Sci., 10, 194, 2015
  15. Ferdosh S, Sarker MZI, Rahman NNNA, Akand MJH, Ghafoor K, Awang MB, Kadir MOA, Korean J. Chem. Eng., 30(7), 1466, 2013
  16. Chaudhari SP, Dugar RP, J. Drug. Deliv. Sci. Tec., 41, 68, 2017
  17. Knop K, Hoogenboom R, Fischer D, Schubert US, Angew. Chem.-Int. Edit., 49, 6288, 2010
  18. Kwon KT, Uddin MS, Jung GW, Chun BS, Korean J. Chem. Eng., 28(10), 2044, 2011
  19. Kim JS, Jo HY, Korean J. Chem. Eng., 37(6), 1086, 2020
  20. Sodeifian G, Sajadian SA, Razmimanesh F, Ardestani NS, Korean J. Chem. Eng., 35(10), 2097, 2018
  21. Jung II, Haam S, Lim G, Ryu JH, Korean J. Chem. Eng., 28(9), 1945, 2011
  22. Charoenchaitrakool M, Trisilanun W, Srinopakhun P, Korean J. Chem. Eng., 27(3), 950, 2010
  23. Chitanvis SM, Physica A, 322, 55, 2003
  24. Han CN, Kang CH, Korean J. Chem. Eng., 34(6), 1781, 2017
  25. Huang Z, Sun GB, Chiew YC, Kawi S, Powder Technol., 160(2), 127, 2005
  26. Kwon KT, Uddin MS, Jung GW, Chun BS, Korean J. Chem. Eng., 28(10), 2044, 2011
  27. Chinnarasu C, Montes A, Pereyra C, Casas L, Fernandez-Ponce MT, Mantell C, Pattabhi S, de la Ossa EM, Korean J. Chem. Eng., 33(2), 594, 2016
  28. Rostamian H, Lotfollahi MN, Part. Sci. Technol., 38(5), 617, 2020
  29. Mondal M, Roy S, Mukhopadhyay M, Ind. Eng. Chem. Res., 54(13), 3451, 2015
  30. Prasad R, Patsariya R, Dalvi SV, Powder Technol., 310, 143, 2017
  31. Adeli E, Braz. J. Pharm. Sci., 52, 1, 2016
  32. Vinjamur M, Javed M, Mukhopadhyay M, J. Supercrit. Fluids, 79, 216, 2013
  33. McLoughlin CM, McMinn WAM, Magee TRA, Powder Technol., 134(1-2), 40, 2003
  34. Corrigan O, Murphy C, Timoney R, Int. J. Pharm., 4, 67, 1979
  35. Shrimal P, Jadeja G, Naik J, Patel S, J. Drug Deliv. Sci. Tec., 53, 101225, 2019
  36. Baseri H, Lotfollahi MN, Asl AH, J. Food Process. Eng., 34, 293, 2011
  37. Baseri H, Haghighi-Asl A, Lotfollahi MN, Chem. Eng. Technol., 33(2), 267, 2010
  38. Dittanet P, Phothipanyakun S, Charoenchaitrakool M, J. Taiwan Inst. Chem. E, 63, 17, 2016
  39. Movasaghi Z, Rehman S, Rehman DI, Appl. Spectrosc. Rev., 43, 134, 2008
  40. Bewick V, Cheek L, Ball J, Crit Care, 7(6), 451, 2003
  41. Lindman HR, Analysis of variance in experimental design, Springer Science & Business Media, New York (1992).
  42. Dean A, Voss D, Draguljic D, Design and analysis of experiments, Vol. 1. New York, Springer (1999).
  43. Wichianphong N, Charoenchaitrakool M, J. Ind. Eng. Chem., 62, 375, 2018