Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2232-2247, 2020
Robust siloxane/graphene oxide thin film membranes: Siloxane size adjustment for improved separation performance and flux recovery
Siloxane/graphene oxide (GO) nanocomposites were synthesized by hydrolysis and condensation of tetraethyl orthosilicate in the presence of GO nanosheets through a sol-gel process. The influence of synthesis parameters on the properties of the siloxane/GO samples was studied and their structural, morphological and physicochemical characteristics were compared using various techniques. Polyether sulfone-supported GO and siloxane/GO thin film membranes were prepared using a pressure-assisted self-assembly method using a dead-end cell, and their separation performance and antifouling ability were evaluated. Siloxane/GOs appeared to have higher interlayer spacing, higher zeta potential and thus higher dispersion stability in aqueous media compared to GO. This gave rise to slower and more uniform sedimentation of the siloxane/GOs during the filtration process and formation of thin film membranes possessing denser and smoother morphology. The porosity, mean pore radius, water contact angle and pure water flux of the prepared membranes were compared. The separation performance of the prepared membranes to remove methylene blue (MB) and penicillin G-procaine (PG-P) from water was evaluated as a function of used GO solution concentration. The antifouling ability of membranes was studied by determining reversible fouling (Rr), irreversible fouling (Rir) resistances and flux recovery ratio (FRR). The siloxane/GO thin film membranes containing larger siloxane network exhibited the highest rejection percentage for MB (~99%) and PG-P (~88%), which were about 40% and 90% higher than that achieved for GO thin film membranes, while the water flux remained as high as 78.1 l·m-2h-1. Furthermore, these membranes exhibited the highest chlorine resistance, stability under ultrasonication, FRR (89%) and Rr (57%) values, implying higher chemical and mechanical stability, flux recovery capacity and antifouling ability.
[References]
  1. Warsinger DM, Chakraborty S, Tow EW, Plumlee MH, et al., Prog. Polym. Sci., 81, 209, 2018
  2. Hosseini SM, Karami F, Farahani SK, Bandehali S, Shen J, Bagheripour E, Seidypoor A, Korean J. Chem. Eng., 37(5), 866, 2020
  3. Agboola O, Korean J. Chem. Eng., 36, 1389, 209
  4. Bu QW, Wang B, Huang J, Deng SB, Yu G, J. Hazard. Mater., 262, 189, 2013
  5. Tahmasebi F, Alimohammadi M, Nabizadeh R, Khoobi M, Karimian K, Zarei A, Korean J. Chem. Eng., 36(6), 894, 2019
  6. Hegab HM, Zou LD, J. Membr. Sci., 484, 95, 2015
  7. Srivastava SK, Pionteck J, J. Nanosci. Nanotechnol., 15, 1984, 2015
  8. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ, Carbon, 53, 38, 2013
  9. Jia Z, Wang Y, J. Mater. Chem. A, 3, 4405, 2015
  10. Hung WS, Tsou CH, De Guzman M, An QF, Liu YLL, Zhang YM, Hu CC, Lee KR, Lai JY, Chem. Mater., 26, 2983, 2014
  11. Hu M, Mi B, Environ. Sci. Technol., 47, 3715, 2013
  12. Mahmoud KA, Mansoor B, Mansour A, Khraisheh M, Desalination, 356, 208, 2015
  13. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK, Science, 335(6067), 442, 2012
  14. Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H, ACS Nano, 7, 428, 2013
  15. Li Y, Yuan S, Xia Y, Zhao W, Easton CD, Selomulya C, Zhang X, J. Membr. Sci., 601, 117900, 2020
  16. Zhao H, Yang J, Li Z, Geng Y, Li J, Chen M, Li R, Li Q, Zhang L, J. Clean Prod., 266, 121884, 2020
  17. Xu C, Cuai A, Xu Y, Fu X, Carbon, 62, 465, 2013
  18. Sun P, Chen Q, Li X, Liu H, Wang K, Zhong M, Wei J, Wu D, Ma R, Sasaki T, Zhu H, NPG Asia Mater., 7, e162, 2015
  19. Zhang MC, Guan KC, Shen J, Liu GP, Fan YQ, Jin WQ, AIChE J., 63(11), 5054, 2017
  20. Yang HY, Wang NX, Wang L, Liu HX, An QF, Ji SL, J. Membr. Sci., 545, 158, 2018
  21. He Y, Wang J, Zhang H, Zhang T, Zhang B, Cao S, Liu J, J. Mater. Chem. A, 2, 9548, 2014
  22. Tian Y, Cao YW, Wang Y, Yang WL, Feng JC, Adv. Mater., 25(21), 2980, 2013
  23. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS, ACS Nano, 2, 572, 2008
  24. Jia ZQ, Wang Y, Shi WX, Wang JL, J. Membr. Sci., 520, 139, 2016
  25. Wu GS, Ma LC, Liu L, Chen L, Huang YD, Thermochim. Acta, 613, 77, 2015
  26. Li W, Liu W, Wang H, Lu W, J. Nanosci. Nanotechnol., 16, 5734, 2016
  27. Wu HQ, Tang BB, Wu PY, J. Membr. Sci., 451, 94, 2014
  28. Zheng S, Mi B, Environ. Sci.: Water Res. Technol., 2, 717, 2016
  29. Xi YH, Hu JQ, Liu Z, Xie R, Ju XJ, Wang W, Chu LY, ACS Appl. Mater. Interfaces, 8, 15557, 2016
  30. Anand A, Unnikrishnan B, Mao JY, Lin HJ, Huang CC, Desalination, 429, 119, 2018
  31. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339, 1958
  32. Valizadeh S, Rasoulifard MH, Dorraji MSS, Appl. Surf. Sci., 319, 358, 2014
  33. Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 032183, 2012
  34. Li JF, Xu ZL, Yang H, Feng CP, Shi JH, J. Appl. Polym. Sci., 107(6), 4100, 2008
  35. Yin J, Zhu GC, Deng BL, Desalination, 379, 93, 2016
  36. Sioutopoulos D, Karabelas A, Mappas V, Membranes, 9, 21, 2019
  37. Arefi-Oskoui S, Vatanpour V, Khataee A, J. Ind. Eng. Chem., 41, 23, 2016
  38. Shockravi A, Vatanpour V, Najjar Z, Bahadori S, Javadi A, Microporous Mesoporous Mater., 246, 24, 2017
  39. Saraswathi MSA, Rana D, Vijayakumar P, Alwarappan S, Nagendran A, New J. Chem., 41, 14315, 2017
  40. Kim HJ, Lim MY, Jung KH, Kim DG, Lee JC, J. Mater. Chem. A, 3, 6798, 2015
  41. Zha J, Roggendorf H, Adv. Mater., 3, 522, 1991
  42. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S, Adv. Colloid Interface Sci., 214, 17, 2014
  43. Zhang Y, Zhu YW, Lin G, Ruoff RS, Hu NP, Schaefer DW, Mark JE, Polymer, 54(14), 3605, 2013
  44. Zhou X, Shi TJ, Appl. Surf. Sci., 259, 566, 2012
  45. King AAK, Davies BR, Noorbehesht N, Newman P, Church TL, Harris AT, Razal JM, Minett AI, Sci. Rep., 6, 19491, 2016
  46. Claramunt S, Varea A, Lopez-Diaz D, Velazquez MM, Cornet A, Cirera A, J. Phys. Chem. C, 119, 10123, 2015
  47. Vollebregt S, Ishihara R, Tichelaar FD, Hou Y, Beenakker CIM, Carbon, 50, 3542, 2012
  48. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U, Carbon, 43, 1731, 2005
  49. Diaz D, Holgado ML, Fierro JLG, Velazquez MM, J. Phys. Chem. C, 121, 20489, 2017
  50. Li Y, Probing the response of two-dimensional crystals by optical spectroscopy, Springer International Publishing, Switzerland (2015).
  51. Nerenberg PS, Head-Gordon T, Curr. Opin. Struct. Biol., 49, 129, 2018
  52. Fakharan Z, Naji L, Madanipour K, J. Colloid Interface Sci., 540, 272, 2019
  53. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I, Langmuir, 19(15), 6050, 2003
  54. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B, J. Membr. Sci., 375(1-2), 284, 2011
  55. Akther N, Ali SM, Phuntsho S, Shon H, Desalination, 491, 114591, 2020
  56. Gao P, Liu ZY, Tai MH, Sun DD, Ng W, Appl. Catal. B: Environ., 138, 17, 2013
  57. Gao Y, Hu M, Mi BX, J. Membr. Sci., 455, 349, 2014
  58. Yan X, Tao W, Cheng S, Ma C, Zhang Y, Sun Y, Kong X, Chemosphere, 256, 127118, 2020
  59. Lin H, Mehra N, Li Y, Zhu J, J. Membr. Sci., 593, 117401, 2020
  60. Chen X, Qiu M, Ding H, Fu K, Fan Y, Nanoscale, 8, 5696, 2016
  61. Zeng GY, He Y, Ye ZB, Yang X, Chen X, Ma J, Li F, Ind. Eng. Chem. Res., 56(37), 10472, 2017
  62. Mitra S, Banerjee S, Datta A, Chakravorty D, Condensed Matter, arXiv:1207.1995 (2012).
  63. Hou JK, Bao CL, Qu SY, Hu XY, Nair S, Chen YB, Appl. Surf. Sci., 459, 185, 2018