Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2216-2224, 2020
Simultaneous biosynthesis of reduced graphene oxide-Ag-Cu2O nanostructures by lichen extract for catalytic reduction of textile dyes
Metal/metal oxide nanostructures based reduced graphene oxide (LrGO-Ag, LrGO-Cu2O, LrGO-Ag-Cu2O) nanocomposites were obtained via green method using Cetraria islandica (L.) Ach. lichen extract. Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDX), ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were performed to analyze the prepared nanostructures. The results indicated that thenanocomposites were synthesized effectively and Ag-Cu2O nanoparticles with the mean diameter of 27nm were well dispersed on the LrGO. The conversion of methylene blue (MB) to Leuco Methylene Blue (LMB) and 4-Nitrophenol (4- NP) to 4-Aminophenol (4-AP) was performed by biosynthesized catalysts in the presence of NaBH4. The reaction rate of LrGO-Ag-Cu2O nanocomposite during 4-NP and MB reduction was found as 0.0026 s-1 and 0.0497 s-1, respectively. The LrGO-Ag-Cu2O nanocomposite showed superior catalytic performance for the reduction of both textile dyes.
[References]
  1. Ito T, Shimada Y, Suto T, Water Resour. Ind., 20, 46, 2018
  2. Srinivasan S, Sadasivam SK, J. Water Process Eng., 22, 180, 2018
  3. Silva LGM, Moreira FC, Souza AAU, Souza SMAGU, Boaventura RAR, Vilar VJP, J. Clean Prod., 198, 430, 2018
  4. GilPavas E, Dobrosz-Gomez I, Gomez-Garcia MA, J. Water Process Eng., 22, 73, 2018
  5. Xu Y, Li ZH, Su KM, Fan TT, Cao L, Chem. Eng. J., 341, 371, 2018
  6. Herrera-Gonzalez AM, Caldera-Villalobos M, Pelaez-Cid AA, J. Environ. Manage., 234, 237, 2019
  7. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M, J. Colloid Interface Sci., 497, 33, 2017
  8. Mangalam J, Kumar M, Sharma M, Joshi M, Nano-Struct. Nano-Objects, 17, 58 (2019).
  9. Yilmaz E, Tut Y, Turkoglu O, Soylak M, J. Iran. Chem. Soc., 15, 1721, 2018
  10. Wang DS, Li YD, Adv. Mater., 23(9), 1044, 2011
  11. Jin Z, Xiao M, Bao Z, Wang P, Wang J, Angew. Chem.-Int. Edit., 124, 6512, 2012
  12. Pang M, Wang Q, Zeng HC, Chem.-Eur. J., 18, 14605, 2012
  13. Roy I, Bhattacharyya A, Sarkar G, Saha NR, Rana D, Ghosh PP, Palit M, Das AR, Chattopadhyay D, RSC Adv., 4, 52044, 2014
  14. Ping T, Mihua S, Chengwen S, Shuaihua W, Murong C, Rare Metal Mat. Eng., 45, 2214, 2016
  15. Wu C, An X, Gao S, Su L, RSC Adv., 5, 71259, 2015
  16. Meir N, La Plante IJ, Flomin K, Chockler E, Moshofsky B, Diab M, Volokh M, Mokari T, J. Mater. Chem. A, 1, 1763, 2013
  17. Guo XH, Ma JQ, Ge HG, Russ. J. Phys. Chem. A, 89, 1374, 2015
  18. Chen L, Liu MM, Zhao Y, Kou QW, Wang YX, Liu Y, Zhang YJ, Yang JH, Jung YM, Appl. Surf. Sci., 435, 72, 2018
  19. Dou L, Wang Y, Li Y, Zhang H, Dalton Trans., 46, 15836, 2017
  20. Chakravarty A, Bhowmik K, Mukherjee A, De G, Langmuir, 31(18), 5210, 2015
  21. Rath PC, Saikia D, Mishra M, Kao HM, Appl. Surf. Sci., 427, 1217, 2018
  22. Roopan SM, Surendra TV, Elango G, Kumar SHS, Appl. Microbiol. Biotechnol., 98(12), 5289, 2014
  23. Dauthal Preeti, Mukhopadhyay Mausumi, Ind. Eng. Chem. Res., 55(36), 9557, 2016
  24. Vijayaraghavan K, Ashokkumar T, J. Environ. Chem. Eng., 5, 4866, 2017
  25. Zikalala N, Matshetshe K, Parani S, Oluwafemi OS, Nano-Struct. Nano-Objects, 16, 288 (2018).
  26. Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, ALOthman ZA, Mola GT, J. King Saud. Univ. Sci., 31, 257, 2019
  27. Olafsdottir ES, Ingolfsdottir K, Planta Med., 67, 199, 2001
  28. Yildiz N, Ates C, Yilmaz M, Demir D, Yildiz A, Calimli A, Green Process. Synth., 3, 259, 2014
  29. Xu M, Heidmarsson S, Olafsdottir ES, Buonfiglio R, Kogej T, Omarsdottir S, Phytomedicine, 23, 441, 2016
  30. Zhou R, Yang Y, Park SY, Nguyen TT, Seo YW, Lee KH, Lee JH, Kim KK, Hur JS, Kim H, Sci. Rep., 7, 8136, 2017
  31. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183, 2007
  32. Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, Lee YK, RSC Adv., 5, 42141, 2015
  33. Divya KS, Chandran A, Reethu VN, Mathew S, Appl. Surf. Sci., 444, 811, 2018
  34. Mata R, Bhaskaran A, Sadras SR, Particuology, 24, 78, 2016
  35. Mowry S, Ogren PJ, J. Chem. Educ., 76, 970, 1999
  36. Krishna R, Fernandes DM, Dias C, Freire C, Ventura J, Titus E, Mater. Today Proc., 3, 2814, 2016
  37. Prasad R, Lolakshi MK, Bhat BR, Synth. Met., 219, 26, 2016
  38. Nasrollahzadeh M, Atarod M, Jaleh B, Gandomirouzbahani M, Ceram. Int., 42, 8587, 2016
  39. Atarod M, Nasrollahzadeh M, Sajadi SM, J. Colloid Interface Sci., 465, 249, 2016
  40. Rout L, Kumar A, Dhaka RS, Reddy GN, Giri S, Dash P, Appl. Catal. A: Gen., 5238, 107, 2017
  41. Nirumand L, Farhadi S, Zabardasti A, Acta Chim. Slov., 65, 919, 2018
  42. Cıplak Z, Getiren B, Gokalp C, Yıldız A, Yıldız N, Chem. Eng. Commun., 207, 559, 2020
  43. Yuan X, Xiao S, Taylor TN, Science, 308, 1017, 2005
  44. Haghighi B, Tabrizi MA, RSC Adv., 3, 13365, 2013
  45. Wu L, Qu P, Zhou R, Wang B, Liao S, High Perform. Polym., 24, 486, 2015
  46. Guo Y, Wang H, Ma X, Jin J, Ji W, Wang X, Song W, Zhao B, He C, ACS Appl. Mater. Interfaces, 9, 19074, 2017
  47. Cıplak Z, Gokalp C, Getiren B, Yıldız A, Yıldız N, Green Process Synth., 7, 433, 2018
  48. Zhao Z, Cai Z, Yang L, Hu Z, Zhang Y, Peng X, Wang Q, Yuan X, Li G, J. Mater. Sci. Mater. Electron., 29, 17743, 2018
  49. Gopalakrishnan K, Ramesh C, Elango M, Thamilselvan M, ISRN Mater. Sci., 2014, 1, 2014
  50. Khan M, Al-Marri AH, Khan M, Shaik MR, Mohri N, et al., Nanoscale Res. Lett., 10, 281, 2015
  51. Das TK, Bhawal P, Ganguly S, Mondal S, Das NC, Surf. Interface, 13, 79, 2018
  52. Yeh CC, Wu PR, Chen DH, Mater. Lett., 136, 274, 2014
  53. Dubey SP, Nguyen TTM, Kwon YN, Lee C, J. Ind. Eng. Chem., 29, 282, 2015
  54. Sharma K, Maiti K, Kim NH, Hui D, Lee JH, Compos. Part B Eng., 138, 35, 2018
  55. Pang JJ, Li WT, Cao ZH, Xu JJ, Li X, Zhang XK, Appl. Surf. Sci., 439, 420, 2018
  56. Bozkurt PA, Ultrason. Sonochem., 35, 397, 2017
  57. Zhang Y, Wang JS, Qiu JJ, Jin X, Umair MM, Lu RW, Zhang SF, Tang BT, Appl. Energy, 237, 83, 2019
  58. Zhang W, Li X, Yang Z, Tang X, Ma Y, Li M, Hu N, Wei H, Zhang Y, Nanotechnology, 27, 265703, 2016
  59. Zhang W, Yin Z, Chun A, Yoo J, Diao G, Kim YS, Piao Y, J. Power Sources, 318, 66, 2016
  60. Shim KS, Kim JH, Kim IH, Kim K, J. Nanopart. Res., 14, 735, 2012
  61. Isa N, Lockman Z, Environ. Sci. Pollution R, 26, 11482, 2019
  62. Hamedi S, Shojaosadati SA, Mohammadi A, J. Photochem. Photobiol., 167, 36, 2017
  63. Yilmaz E, Soylak M, J. Iran. Chem. Soc., 14, 2503, 2017
  64. Hsu KC, Chen DH, Nanoscale Res. Lett., 9, 484, 2014
  65. Ahmad A, Wei Y, Syed F, Imran M, Khan ZUH, Tahir K, Khan AU, Raza M, Khan Q, Yuan Q, RSC Adv., 5, 99364, 2015
  66. Atarod M, Nasrollahzadeh M, Sajadi SM, RSC Adv., 5, 91532, 2015
  67. Huang C, Ye W, Liu Q, Qiu X, ACS Appl. Mater. Interfaces, 6, 14469, 2014
  68. Sasmal AK, Dutta S, Pal T, Dalton Trans., 45, 3139, 2016
  69. Kandula S, Jeevanandam P, Eur. J. Inorg. Chem., 2016, 1548, 2016
  70. Jiang ZJ, Liu CY, Sun LW, J. Phys. Chem. B, 109(5), 1730, 2005
  71. Lv JJ, Wang AJ, MA X, Xiang RY, Chen JR, Feng JJ, J. Mater. Chem. A, 3, 290, 2015
  72. Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS, Appl. Catal. B: Environ., 181, 371, 2016
  73. Li X, Ma Y, Yang Z, Huang D, Xu S, Wang T, Su Y, Hu N, Zhang Y, J. Alloy. Compd., 706, 377, 2017
  74. Edison TJI, Sethuraman MG, Process Biochem., 47(9), 1351, 2012
  75. Adyani SH, Soleimani E, Int. J. Hydrog. Energy, 44(5), 2711, 2019