Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2136-2142, 2020
Image cytometry of irregular microplastic particles in a cross-slot microchannel utilizing viscoelastic focusing
Microplastic particles have recently attracted much attention owing to their potential adverse effects on marine and terrestrial environments. Although several studies have been conducted on this topic, one of the prominent existing challenges is developing analytical methods to precisely characterize isolated microplastics. Specifically, a systematic method that determines both the size and shape of irregular micron-sized particles is required because conventional optical methods provide only two-dimensional images of microplastics and cannot easily handle cases of tilting or aggregation of particles. In this study, we demonstrate that previously developed microfluidic technologies can be successfully applied to measure the size and shape of oblate microparticles utilizing viscoelastic particle focusing. Furthermore, this technique is also applicable for irregular microplastic fragments that are predominantly found in environmental samples.
[References]
  1. Moore CJ, Environ. Res., 108, 131, 2008
  2. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R, Environ. Sci. Technol., 45, 9175, 2011
  3. Ehlers SM, Ellrich JA, Mar. Pollut. Bull., 151, 110845, 2020
  4. Leslie H, Brandsma S, Van Velzen M, Vethaak A, Environ. Int., 101, 133, 2017
  5. Lim T, Jung GY, Kim JH, Park SO, Park J, Kim YT, Kang SJ, Jeong HY, Kwak SK, Joo SH, Nat. Commun., 11, 1, 2020
  6. Park H, Oh MJ, Kim PG, Kim G, Jeong DH, Ju BK, Lee WS, Chung HM, Kang HJ, Kwon JH, Environ. Sci. Technol., 54, 1503, 2020
  7. Scheurer M, Bigalke M, Environ. Sci. Technol., 52, 3591, 2018
  8. Choi JS, Jung YJ, Hong NH, Hong SH, Park JW, Mar. Pollut. Bull, 129, 231, 2018
  9. Gray AD, Weinstein JE, Environ. Toxicol. Chem., 36, 3074, 2017
  10. Wright SL, Thompson RC, Galloway TS, Environ. Pollut., 178, 483, 2013
  11. Eo S, Hong SH, Song YK, Lee J, Lee J, Shim WJ, Environ. Pollut., 238, 894, 2018
  12. Bergmann M, Gutow L, Klages M, Marine anthropogenic litter, Springer, New York (2015).
  13. Bouwmeester H, Hollman PC, Peters RJ, Environ. Sci. Pollut. Res., 49, 8932, 2015
  14. Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L, Sci. Total Environ., 717, 134625, 2020
  15. Hernandez LM, Xu EG, Larsson HC, Tahara R, Maisuria VB, Tufenkji N, Environ. Sci. Technol., 53, 12300, 2019
  16. Naji A, Nuri M, Vethaak AD, Environ. Pollut., 235, 113, 2018
  17. Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D, Environ. Sci. Process. Impacts, 15, 1949, 2013
  18. Shim WJ, Hong SH, Eo SE, Anal. Methods, 9, 1384, 2017
  19. Zhang S, Wang J, Liu X, Qu F, Wang X, Wang X, Li Y, Sun Y, Trends Anal. Chem., 111, 62, 2019
  20. Yunker PJ, Still T, Lohr MA, Yodh AG, Nature, 476(7360), 308, 2011
  21. Ding T, Song K, Clays K, Tung CH, Adv. Mater., 21(19), 1936, 2009
  22. Wokaun A, Bergman J, Heritage J, Glass A, Liao P, Olson D, Phys. Rev. B, 24, 849, 1981
  23. Royer P, Bijeon JL, Goudonnet JP, Inagaki T, Arakawa ET, Surf. Sci., 217(1-2), 384, 1989
  24. Kim J, Kim JY, Kim Y, Lee SJ, Kim JM, Anal. Chem., 89, 8662, 2017
  25. Li J, Wei Y, Deng Y, Gu D, Yang X, Zhang L, Tu B, Zhao D, J. Mater. Chem., 20, 6460, 2010
  26. Li D, Wang Y, Plasmonic nanostructures as surfaceenhanced Raman scattering (SERS) substrate for protein biomarker sensing, InTech, London (2017).
  27. Mazzoli A, Favoni O, Powder Technol., 225, 65, 2012
  28. Batchelor G, J. Fluid Mech., 46, 813, 1971
  29. Cha S, Shin T, Lee SS, Shim W, Lee G, Lee SJ, Kim Y, Kim JM, Anal. Chem., 84, 10471, 2012
  30. Bae YB, Jang HK, Shin TH, Phukan G, Tran TT, Lee G, Hwang WR, Kim JM, Lab Chip, 16, 96, 2016
  31. Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28, 153, 1998
  32. Ahn SJ, Ahn KH, Lee SJ, Colloid Polym. Sci., 294, 859, 2016
  33. Jeffery GB, Proc. R. Soc. Lond., 102, 161, 1922
  34. Petrie CJS, J. Non-Newton. Fluid Mech., 87(2-3), 369, 1999
  35. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric fluids fluid mechanics, Wiley Interscience, New York (1987).
  36. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143(2-3), 170, 2007
  37. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129(1), 1, 2005
  38. Ho B, Leal L, J. Fluid Mech., 76, 783, 1976
  39. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266, 2011
  40. Kim B, Kim JM, Biomicrofluidics, 10, 024111, 2016
  41. Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501, 2007
  42. Tehrani MA, J. Rheol., 40(6), 1057, 1996
  43. Han M, Kim C, Kim M, Lee S, J. Rheol., 43(5), 1157, 1999
  44. Leighton D, Acrivos A, J. Fluid Mech., 181, 415, 1987
  45. Dylla-Spears R, Townsend JE, Jen-Jacobson L, Sohn LL, Muller SJ, Lab Chip, 10, 1543, 2010
  46. Schowalter WR, Luikov A, Minkowyc W, Progress in heat and mass transfer: Selected papers of the 1970 international seminar, Elsevier, New York (2013).
  47. Guazzelli E, Morris JF, A physical introduction to suspension dynamics, Cambridge University Press, New York (2011).
  48. Jahnke A, Arp HPH, Escher BI, Gewert B, Gorokhova E, Kuhnel D, Ogonowski M, Potthoff A, Rummel C, Schmitt-Jansen M, Environ. Sci. Technol. Lett., 4, 85, 2017
  49. Kim Y, Ahn KH, Lee SJ, J. Membr. Sci., 534, 25, 2017
  50. Kursun I, Min. Proc. Ext. Met. Rev., 30, 346, 2009
  51. Mora C, Kwan A, Ceme. Concr. Res., 30, 351, 2000
  52. Krumbein WC, J. Sediment. Res., 11, 64, 1941
  53. Olson E, J. GXP Compliance, 15, 85, 2011
  54. Gossett DR, Henry T, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D, Proc. Natl. Acad. Sci. U.S.A., 109, 7630, 2012