Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2117-2123, 2020
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern
Microbubble streaming in a microfluidic device has been increasingly studied and used in recent years, due to its unique flow pattern that can promote mixing, sort particles and trap particles in microscale flows. However, there have been few numerical studies of this subject. We performed a 3D direct simulation of a cylindrical-shaped microbubble, trapped in a pit of a microchannel and sandwiched between two parallel plates, vibrated by pressure oscillation. Our simulation was able to reproduce the experimentally observed relation between the bubble protrusion depth and the vortex pattern: As the bubble protrusion depth increased, new vortices emerged and grew larger. Our investigation of the streamlines near the bubble interface indicates that the number of non-spherical nodes in the bubble interface is closely related to the flow pattern in the liquid phase. It was also validated by our simulation that the flow velocity showed an exponentially decaying trend as the radial distance outward from the vortex center. Our numerical model was also used to investigate the effects of surface tension and channel size on the vortex pattern. Larger surface tension or smaller channel size showed a similar effect as the increased protrusion depth induced more vortices.
[References]
  1. Riley N, Theor. Comput. Fluid Dyn., 10, 349, 1998
  2. Riley N, Annu. Rev. Fluid Mech., 33, 43, 2001
  3. Ryu K, Chung SK, Cho SK, JALA J. Assoc. Lab. Autom., 15, 163, 2010
  4. Marmottant P, Hilgenfeldt S, Proc. Natl. Acad. Sci., 101, 9523, 2004
  5. Tovar AR, Patel MV, Lee AP, Microfluid. Nanofluidics, 10, 1269, 2011
  6. Ahmed D, Chan CY, Lin SS, Muddana HS, Nama N, Benkovicc SJ, Huang TJ, Lab Chip, 13, 328, 2013
  7. Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z, Muddana HS, Crespi VH, Huang TJ, Sci. Rep., 5, 9744, 2015
  8. Rallabandi B, Wang C, Hilgenfeldt S, Phys. Rev. Fluids, 2, 64501, 2017
  9. Chung SK, Cho SK, Microfluid. Nanofluidics, 6, 261, 2009
  10. Chung SK, Cho SK, J. Micromech. Microeng., 18, 125024, 2008
  11. Wang C, Jalikop SV, Hilgenfeldt S, Appl. Phys. Lett., 99, 34101, 2011
  12. Monjezi S, Behdani B, Palaniappan MB, Jones JD, Park J, Adv. Chem. Eng. Sci., 7, 362, 2017
  13. Zhou R, Wang C, J. Micromech. Microeng., 25, 84005, 2015
  14. Wang C, Jalikop SV, Hilgenfeldt S, Biomicrofluidics, 6, 12801, 2012
  15. Patel MV, Tovar AR, Lee AP, Lab Chip, 12, 139, 2012
  16. Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guob F, Huang TJ, Lab Chip, 13, 1772, 2013
  17. Zhao C, Xie Y, Mao Z, Zhao Y, Rufo J, Yang S, Guo F, Maic JD, Huang TJ, Lab Chip, 14, 384, 2014
  18. Xie Y, Ahmed D, Lapsley MI, Lu M, Li S, Huang TJ, J. Lab. Autom., 19, 137, 2014
  19. Patel MV, Nanayakkara IA, Simon MG, Lee AP, Lab Chip, 14, 3860, 2014
  20. Yazdi S, Ardekani AM, Biomicrofluidics, 6, 44114, 2012
  21. Feng J, Yuan J, Cho SK, Lab Chip, 15, 1554, 2015
  22. Fang WF, Lee AP, Microfluid. Nanofluidics, 18, 1265, 2015
  23. Longuet-Higgins MS, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454, 725 (1998).
  24. Spelman TA, Lauga E, J. Eng. Math., 105, 31, 2017
  25. Doinikov AA, Cleve S, Regnault G, Mauger C, Inserra C, Phys. Rev. E, 100, 33104, 2019
  26. Wang C, Rallabandi B, Hilgenfeldt S, Phys. Fluids, 25, 22002, 2013
  27. Rallabandi B, Wang C, Hilgenfeldt S, J. Fluid Mech., 739, 57, 2014
  28. Volk A, Rossi M, Kahler CJ, Hilgenfeldt S, Marin A, Lab Chip, 15, 4607, 2015
  29. Volk A, Kahler CJ, Phys. Rev. Appl., 9, 54015, 2018
  30. Jasak H, Jemcov A, Tukovic Z, in International Workshop on Coupled Methods in Numerical Dynamics, 1000, 1 (2007).
  31. Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR, Comput. Fluids, 86, 28, 2013
  32. Deshpande SS, Anumolu L, Trujillo MF, Comput. Sci. Discov., 5, 14016, 2012
  33. Behdani B, Senter M, Mason L, Leu M, Park J, J. Manuf. Mater. Process., 4, 46, 2020
  34. Wang C, Microbubble streaming flows for non-invasive particle manipulation and liquid mixing, USA (2014).
  35. Marin A, Rossi M, Rallabandi B, Wang C, Hilgenfeldt S, Kahler CJ, Phys. Rev. Appl., 3, 41001, 2015
  36. Doinikov AA, Bouakaz A, J. Fluid Mech., 742, 425, 2014
  37. Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837, 2019
  38. Ma P, Fu T, Zhu C, Ma Y, Korean J. Chem. Eng., 36(1), 21, 2019
  39. Singh R, Lee HJ, Singh AK, Kim DP, Korean J. Chem. Eng., 33(8), 2253, 2016
  40. Im DJ, Korean J. Chem. Eng., 32(6), 1001, 2015
  41. Jeong HH, Issadore D, Lee D, Korean J. Chem. Eng., 33(6), 1757, 2016