Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2104-2116, 2020
Effects of heat sink structure on heat transfer performance cooled by semiconductor and nanofluids
On account of the low heat dissipation problem of common cooling systems, an experimental system with enhanced structures was set to improve the heat transfer of heat sink cooled by semiconductor and TiO2-water nanofluids. The influences of structures (smooth surface, metal foam with PPI=30, cylindrical bulge (height: H=2mm, staggered arrangement), cylindrical groove (depth: D'=2 mm, staggered arrangement)), nanoparticle mass fractions (ω= 0.0-0.5 wt%), input power of the semiconductor (P=2W, 4W, 6W), and Reynolds numbers (Re=414-1,119) on the flow and heat transfer properties of TiO2-water nanofluids were studied. The compositive thermal and hydraulic properties of the enhanced technologies were analyzed by thermal efficiency. Results indicated that the combination of semiconductor and metal foam shows the most excellent performance compared with other combinations and it can be enhanced by 48.1% at best. Nanofluids with ω=0.4 wt% display the best cooling capacity instead of the highest concentration. The cooling effect shows an increasing trend with the input power of the semiconductor.
[References]
  1. Chen MJ, He YR, Zhu JQ, Wen DS, Appl. Energy, 181, 65, 2016
  2. Chen MJ, He YR, Wang XZ, Hu YW, Appl. Energy, 211, 735, 2018
  3. Xuan Y, Li Q, Int. J. Heat Fluid Flow, 21(1), 58, 2000
  4. Fang X, Xuan Y, Li Q, Appl. Phys. Lett., 95(20), 203108, 2009
  5. Li HR, He YR, Wang CH, Wang XZ, Hu YW, Appl. Energy, 236, 117, 2019
  6. Hu YW, He YR, Zhang ZD, Wen DS, Sol. Energy Mater. Sol. Cells, 192, 94, 2019
  7. Nikkhah V, Sarafraz MM, Hormozi F, Chem. Biochem. Eng. Q., 29, 405, 2015
  8. Arya A, Sarafraz MM, Shahmiri S, Madani SA, Nikkhah V, Nakhjavani SM, Heat. Mass Transf., 54(4), 985, 2018
  9. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S, Int. J. Heat Mass Transf., 117, 474, 2018
  10. Li Z, Shahsavar A, Alrashed AA, Talebizadehsardari P, Appl. Therm. Eng., 167, 114777, 2020
  11. Zhang R, Aghakhani S, Pordanjani AH, Vahedi SM, Shahsavar A, Afrand M, Eur. Phys. J Plus., 135(2), 1, 2020
  12. Baratpour M, Karimipour A, Afrand M, Wongwises S, Int. Commun. Heat Mass Transf., 74, 108, 2016
  13. Atashrouz S, Mozaffarian M, Pazuki G, Korean J. Chem. Eng., 33(9), 2522, 2016
  14. Alrashed AA, Karimipour A, Bagherzadeh SA, Safaei MR, Afrand M, Int. J. Heat Mass Transf., 127, 925, 2018
  15. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F, Teimouri H, Phys. E Syst. Nanos., 85, 90, 2017
  16. Li Z, Sheikholeslami M, Chamkha AJ, Raizah ZA, Saleem S, Comput. Method. Appl. Mech. Eng., 338, 618, 2020
  17. Kim IH, Sim HW, Hong HH, Kim DW, Lee WJ, Lee DK, Korean J. Chem. Eng., 36(6), 1004, 2019
  18. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS, J. Therm. Anal. Calorim., 139(4), 2679, 2020
  19. Hojjat M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 27(5), 1391, 2010
  20. Chun BH, Kang HU, Kim SH, Korean J. Chem. Eng., 25(5), 966, 2008
  21. Mohammed HI, Sardari PT, Giddings D, Int. J. Therm. Sci., 146, 106099, 2019
  22. Yang L, Du K, Zhang Z, Int. J. Mech. Sci., 168, 105310, 2020
  23. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi AA, J. Therm. Anal. Calorim., 139(3), 2365, 2020
  24. Shahsavar A, Sardari PT, Toghraie D, Int. J. Numer. Meth. Heat Fluid Flow, 29(3), 915, 2019
  25. Izadi M, Mohebbi R, Karimi D, Sheremet MA, Chem. Eng. Process., 125, 56, 2018
  26. Mohebbi R, Izadi M, Chamkha AJ, Phys. Fluids, 29(12), 122009, 2017
  27. Mehryan SA, Izadi M, Chamkha AJ, Sheremet MA, J. Mol. Liq., 263, 510, 2018
  28. Izadi M, Hoghoughi G, Mohebbi R, Sheremet MA, J. Mol. Liq., 261, 357, 2018
  29. Izadi M, Mohebbi R, Delouei AA, Sajjadi H, Int. J. Mech. Sci., 151, 154, 2019
  30. Sheikholeslami M, Jafaryar M, Li ZX, Int. J. Heat Mass Transf., 124, 980, 2018
  31. Sheikholeslami M, Ganji DD, Gorjibandpy M, Appl. Therm. Eng., 100, 805, 2016
  32. Sheikholeslami M, Jafaryar M, Li Z, J. Mol. Liq., 263, 489, 2018
  33. Jafaryar M, Sheikholeslami M, Li Z, Moradi R, J. Therm. Anal. Calorim., 135, 305, 2019
  34. Li Z, Sheikholeslami M, Ayani M, Shamlooei M, Shafee A, Waly M, Tlili I, Physica A, 524, 540, 2019
  35. Nasiri M, Etemad SG, Bagheri R, Korean J. Chem. Eng., 28(12), 2230, 2011
  36. Yang FL, Zhou SJ, Zhang CX, Korean J. Chem. Eng., 32(5), 816, 2015
  37. Qi C, Zhao N, Cui X, Chen TT, Hu JD, Int. J. Heat Mass Transf., 123, 320, 2018
  38. Zhao N, Guo LX, Qi C, Chen TT, Cui X, Energy Conv. Manag., 181, 235, 2019
  39. Zhao N, Qi C, Chen TT, Tang JH, Cui X, Int. J. Heat Mass Transf., 135, 16, 2019
  40. Dehghan M, Valipour MS, Saedodin S, Energy Conv. Manag., 110, 22, 2016
  41. Chen JJ, Han JC, Xu DG, Int. J. Hydrog. Energy, 44(23), 11546, 2019
  42. Shojaeian M, Shojaee SMN, Korean J. Chem. Eng., 30(4), 823, 2013
  43. Sardari PT, Grant DM, Giddings D, Walker GS, Gillott M, Energy Conv. Manag., 201, 112151, 2019
  44. Sardari PT, Mohammed HI, Giddings D, Walker GS, Gillott M, Grant DM, Energy, 189, 116108, 2019
  45. Sardari PT, Giddings D, Grant D, Gillott M, Walker GS, Renew. Energy, 148, 987, 2020
  46. Naphon P, Klangchart S, Wongwises S, Int. Commun. Heat Mass Transf., 36(8), 834, 2009
  47. Naphon P, Energy Conv. Manag., 48(10), 2708, 2007
  48. Gonzalezaraoz MP, Sanchezramirez JF, Jimenezperez JL, Chigoanota E, Herreraperez JL, Mendozaalvarez JG, Nat. Sci., 4(12), 1022, 2012
  49. Murshed SMS, Santos FJV, de Castro CA, J. Nano, 2(4), 261, 2013
  50. Qi C, Hu JD, Liu MN, Guo LX, Rao ZH, Energy Conv. Manag., 153, 557, 2017
  51. Pak BC, Cho YI, Exp. Heat Transf., 11(2), 151, 1998
  52. Qi C, Wan Y, Li C, Han D, Rao Z, Int. J. Heat Mass Transf., 115(Part B), 1072, 2017
  53. Kline S, Mech. Eng., 75, 3, 1953
  54. Wu X, Wu H, J. Chem. Ind. Eng., 59(9), 2181, 2008
  55. Qi C, Liang L, Rao ZH, Int. J. Heat Mass Transf., 94, 316, 2016
  56. Qi C, Wang GQ, Yang LY, Wan YL, Rao ZH, Int. J. Heat Mass Transf., 105, 664, 2017