Issue
Korean Journal of Chemical Engineering,
Vol.37, No.12, 2094-2103, 2020
Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations
Accurate prediction of gas-solid flow hydrodynamics is key for the design, optimization, and scale-up of a circulating fluidized bed (CFB) reactor. Computational fluid dynamics (CFD) simulation with two-dimensional (2D) domain has been routinely used, considering the computational costs involved in three-dimensional (3D) simulations. This work evaluated the prediction capability of 2D and 3D gas-solid flow simulation in the lab-scale CFB riser section. The difference between 2D and 3D CFD simulation predictions was assessed and discussed in detail, considering several flow variables (superficial gas velocity, solid circulation rate, and secondary air injection). The transient Eulerian- Eulerian multiphase model was used. CFD simulation results were validated through an in-house experiment. The comparison between the experimental data and both computational domains shows that the 3D simulation can accurately predict the axial solid holdup profile. The CFD simulation comparison considering several flow conditions clearly indicated the limitation of the 2D simulation to accurately predict key hydrodynamic features, such as high solid holdup near the riser exit and riser bottom dense region. The accuracy of 2D and 3D simulations was further assessed using root-mean-square error calculation. Results indicated that the 3D simulation predicts flow behavior with higher accuracy than the 2D simulation.
[References]
  1. Berruti F, Chaouki J, Godfroy L, Pugsley TS, Patience GS, Can. J. Chem. Eng., 73, 569, 1995
  2. Knowlton TM, Knowlton TM, Knowlton TM, Circulating fluidized beds, Blackie Academic & Professional, London, UK (1997).
  3. Hartge EU, Li Y, Werther J, in Circulating fluidized bed technology, Pergamon Press, Toronto (1986).
  4. Wang J, Chem. Eng. Sci., 215, 115428, 2020
  5. Li TW, Benyahia S, Dietiker JF, Musser J, Sun X, Chem. Eng. Sci., 123, 236, 2015
  6. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21, 2013
  7. Cloete JH, Cloete S, Radl S, Amini S, Powder Technol., 303, 156, 2016
  8. Shah MT, Utikar RP, Pareek VK, Tade MO, Evans GM, Powder Technol., 269, 247, 2015
  9. Shah S, Ritvanen J, Hyppanen T, Kallio S, Powder Technol., 218, 131, 2012
  10. Peirano E, Delloume V, Leckner B, Chem. Eng. Sci., 56(16), 4787, 2001
  11. Cammarata L, Lettieri P, Micale GDM, Colman D, Int. J. Chem. Reactor Eng., 1, A48, 2003
  12. Reuge N, Cadoret L, Coufort-Saudejaud C, Pannala S, Syamlal M, Caussat B, Chem. Eng. Sci., 63(22), 5540, 2008
  13. Asegehegn TW, Schreiber M, Krautz HJ, Powder Technol., 219, 9, 2012
  14. Xie N, Battaglia F, Pannala S, Powder Technol., 182(1), 1, 2008
  15. Xie N, Battaglia F, Pannala S, Powder Technol., 182(1), 14, 2008
  16. Bakshi A, Altantzis C, Bershanska A, Stark AK, Ghoniem AF, Powder Technol., 332, 114, 2018
  17. Cardoso J, Silva V, Eusebio D, Brito P, Boloy RM, Tarelho L, Silveira JL, Renew. Energy, 131, 713, 2019
  18. Chang J, Wu ZJ, Wang X, Liu WY, Powder Technol., 351, 159, 2019
  19. Li TW, Pannala S, Shahnam M, Powder Technol., 254, 115, 2014
  20. Cho YJ, Namkung W, Kim SD, Park SW, J. Chem. Eng. Jpn., 27(2), 158, 1994
  21. Ersoy LE, Golriz MR, Koksal M, Hamdullahpur F, Powder Technol., 145(1), 25, 2004
  22. Koksal M, Hamdullahpur F, Chem. Eng. Res. Des., 82(8), 979, 2004
  23. Namkung W, Kim SD, Powder Technol., 113(1-2), 23, 2000
  24. Smolders K, Baeyens J, Powder Technol., 119(2-3), 269, 2001
  25. Li J, Tung Y, Kwauk M, in Circulating fluidized bed technology II, Pergamon Press, New York, U.S.A. (1988).
  26. Harris AT, Davidson JF, Thorpe RB, AIChE J., 49(1), 52, 2003
  27. De Wilde J, Marin GB, Heynderickx GJ, Chem. Eng. Sci., 58(3-6), 877, 2003
  28. Gupta SK, Berruti F, Powder Technol., 108(1), 21, 2000
  29. Takeuchi H, Hirama T, Chiba T, Biswas J, Leung LS, Powder Technol., 47, 195, 1986
  30. Arena U, Cammarota A, Pistone L, in Circulating fluidized bed technology, Pergamon Press, Toronto (1986).
  31. Anderson TB, Jackson R, Ind. Eng. Chem. Fundam., 6, 527, 1967
  32. Upadhyay M, Park JH, Powder Technol., 272, 260, 2015
  33. Benyahia S, Syamlal M, O'Brien TJ, Powder Technol., 156(2-3), 62, 2005
  34. Jin B, Wang X, Zhong W, Tao H, Ren B, Xiao R, Energy Fuels, 24, 3159, 2010
  35. Zhang YW, Lei FL, Wang SD, Xu X, Xiao YH, Powder Technol., 280, 227, 2015
  36. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  37. Upadhyay M, Seo MW, Nho NS, Park JH, Comp. Aided Chem. Eng., 37, 695, 2015
  38. Andrews AT, Loezos PN, Sundaresan S, Ind. Eng. Chem. Res., 44(16), 6022, 2005
  39. Shah MT, Utikar RP, Tade MO, Pareek VK, Chem. Eng. J., 168(2), 812, 2011
  40. Kang Y, Song PS, Yun JS, Jeong YY, Kim SD, Chem. Eng. Commun., 177, 31, 2000
  41. Koksal M, Hamdullahpur F, Chem. Eng. Commun., 192(9), 1151, 2005
  42. Naren PR, Ranade VV, Particuology, 9, 121, 2011