Issue
Korean Journal of Chemical Engineering,
Vol.37, No.9, 1616-1622, 2020
ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing
Zinc oxide (ZnO) has been widely investigated as an important ultraviolet (UV) sensing material in view of its wide band gap (~3.4 eV). However, the fabrication of continuous thin films of ZnO generally requires complex, time-consuming, and expensive processes, such as sputtering and atomic layer deposition. Herein, we demonstrate a bilayer film consisting of a conducting polymer and ZnO nanoparticles sequentially deposited using a simple, rapid, and inexpensive two-step spin-coating process. In this approach, it is not necessary to have a continuous ZnO nanoparticle film as the active layer, because the conducting polymer deposited under the ZnO nanoparticles acts as a conductive and continuous supporting layer for the particles. Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT: PSS) is used as the auxiliary layer to promote the efficient transport of photo-carriers generated from ZnO nanoparticles under UV light. As a result, under UV light (365 nm), photocurrents obtained from a ZnO/PEDOT: PSS bilayer film are significantly higher (~20 times) than that from a ZnO layer for a given voltage bias. The photoelectric performance can be further tuned by controlling the speed of spin-coating in the deposition of ZnO nanoparticles. The stability and photo response (rise and decay time) of the ZnO/PEDOT: PSS bilayer film under the repeated on-off condition are also reported.
[References]
  1. Zhang S, Cai L, Wang T, Shi R, Miao J, Wei L, Chen Y, Sepulveda N, Wang C, Sci. Rep., 5, 17883, 2015
  2. Yu YQ, Luo LB, Wang MZ, Wang B, Zeng LH, Wu CY, Jie JS, Liu JW, Wang L, Yu SH, Nano Res., 8, 1098, 2015
  3. Ardakani AG, Pazoki M, Mahdavi SM, Bahrampour AR, Taghavinia N, Appl. Surf. Sci., 258(14), 5405, 2012
  4. Kim JY, Shin KY, Raza MH, Pinna N, Sung YE, Korean J. Chem. Eng., 36(7), 1157, 2019
  5. Farzadkia M, Rahmani K, Gholami M, Esrafili A, Rahmani A, Rahmani H, Korean J. Chem. Eng., 31(11), 2014, 2014
  6. Seo YS, Oh SG, Korean J. Chem. Eng., 36(12), 2118, 2019
  7. Yu K, Zhang Y, Xu F, Li Q, Zhu Z, Wan Q, Appl. Phys. Lett., 88, 153123, 2006
  8. Seong H, Yun J, Jun JH, Cho K, Kim S, Nanotechnology, 20, 245201, 2009
  9. Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Adv. Opt. Mater., 4, 238, 2016
  10. Liu X, Du H, Wang P, Lim TT, Sun XW, J. Mater. Chem. C, 2, 9536, 2014
  11. Lin D, Wu H, Zhang W, Li H, Pan W, Appl. Phys. Lett., 94, 172103, 2009
  12. Inamdar SI, Rajpure KY, J. Alloy. Compd., 595, 55, 2014
  13. Chen KJ, Hung FY, Chang SJ, Young SJ, J. Alloy. Compd., 479, 674, 2009
  14. Wang Z, Zhan X, Wang Y, Muhammad S, Huang Y, He J, Nanoscale, 4, 2678, 2012
  15. Tam TV, Hur SH, Chung JS, Choi WM, Sens. Actuators A-Phys., 233, 368, 2015
  16. Son DI, Yang YH, Kim TW, Park WI, Appl. Phys. Lett., 102, 021105, 2013
  17. Saenz-Trevizo A, Amezaga-Madrid P, Piza-Ruiz P, Antunez-Flores W, Miki-Yoshida M, Mat. Res., 19, 33, 2016
  18. Davis EA, Mott NF, Philos. Mag., 22, 0903, 1970
  19. Keem KH, Kim HS, Kim GT, Lee JS, Min BD, Cho KA, Sung MY, Kim SS, Appl. Phys. Lett., 84, 4376, 2004
  20. Zhang W, Bi X, Zhao X, Zhao Z, Zhu J, Dai S, Ku Y, Yang S, Org. Electron., 15, 3445, 2014
  21. Tyona MD, Adv. Mater. Res., 2, 195, 2013
  22. Mouhamad Y, Mokarian-Tabari P, Clarke N, Jones RAL, Geoghegan M, J. Appl. Phys., 116, 123513, 2014
  23. Meyerhofer D, J. Appl. Phys., 49, 3993, 1978
  24. Boruah BD, Mukherjee A, Sridhar S, Misra A, ACS Appl. Mater. Interfaces, 7, 10606, 2015
  25. Shin GH, Kim HY, Kim JH, Korean J. Chem. Eng., 35, 573, 2018