Issue
Korean Journal of Chemical Engineering,
Vol.37, No.9, 1507-1514, 2020
Modified blue TiO2 nanostructures for efficient photo-oxidative removal of harmful NOx gases
Blue TiO2 nanostructures were produced via Lithium/ethylenediamine (Li/EDA) reduction method and applied for photo-oxidative removal of harmful NOx gases under simulated solar light irradiation. Blue TiO2 possesses some unique physicochemical properties such as enhanced visible-light absorption, superficial defects or oxygen vacancies, and the evolution of Ti3+ species. Moreover, the photoluminescence spectra (PL) revealed the efficient separation of photoinduced electron-hole pairs in the modified blue TiO2 nanostructures, enhancing their photocatalytic activities. The results indicated that the blue TiO2 nanostructures exhibited the highest performance towards photo-oxidation of NOx gases, with an efficiency of 72.6% under simulated solar light irradiation.
[References]
  1. Angelo J, Andrade L, Madeira LM, Mendes A, J. Environ. Manage., 129, 522, 2013
  2. Mauzerall DL, Sultan B, Kim N, Bradford DF, Atmos. Environ., 39, 2851, 2005
  3. Chaloulakou A, Mavroidis I, Gavriil I, Atmos. Environ., 42, 454, 2008
  4. Whyand T, Hurst JR, Beckles M, Caplin ME, Respir. Res., 19, 79, 2018
  5. Yacoubi B, Samet L, Bennaceur J, Lamouchi A, Chtourou R, Mater. Sci. Semicond. Process, 30, 361, 2015
  6. Muneer S, Lee JH, Sci. Rep., 8, 12291, 2018
  7. Locci C, Vervisch L, Farcy B, Domingo P, Perret N, Flow Turbulence Combust., 100, 301, 2018
  8. Barman S, Philip L, Environ. Sci. Technol., 40, 1035, 2006
  9. Martinez-Oviedo A, Ray SK, Nguyen HP, Lee SW, J. Photochem. Photobiol. A-Chem., 370, 18, 2019
  10. Nguyen HP, Matsuoka M, Kim TH, Lee SW, J. Photochem. Photobiol. A-Chem., 367, 429, 2018
  11. Zhang K, Wang L, Kim JK, Ma M, Veerappan G, Lee CL, Kong K, Lee H, Park JH, Energy Environ. Sci., 9, 499, 2016
  12. Nguyen HH, Gyawali G, Kim TH, Humam SB, Lee SW, Prog. Nat. Sci. Mater. Int., 28, 548, 2018
  13. Humam SB, Nguyen HH, Regmi C, Gyawali G, Joshi B, Lee SW, Ceram. Int., 45, 4230, 2019
  14. Yan Y, Hao B, Wang D, Chen G, Markweg E, Albrecht A, Schaaf P, J. Mater. Chem. A, 1, 14507, 2013
  15. Kim Y, Hwang HM, Wang L, Kim I, Yoon Y, Lee H, Sci. Rep., 6, 25212, 2016
  16. Yang J, Zheng C, Xiong P, Li Y, Wei M, J. Mater. Chem. A, 2, 19005, 2014
  17. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y, Nano Lett., 12, 1690, 2012
  18. Ri CN, Kim SG, Jong JY, Pak SN, Ri SC, Ri JH, New J. Chem., 42, 647, 2018
  19. Zhu J, He J, Hu L, Da L, J. Solid State Chem., 276, 104, 2019
  20. Nguyen HH, Gyawali G, Lee SW, J. Ceram. Process. Res., 17, 409, 2016
  21. Ao CH, Lee SC, Appl. Catal. B: Environ., 44(3), 191, 2003
  22. Cao JW, Zhang JY, Dong XA, Fu HL, Zhang XM, Lv XS, Li YH, Jiang GM, Appl. Catal. B: Environ., 249, 266, 2019
  23. Xu MX, Wang YH, Geng JF, Jing DW, Chem. Eng. J., 307, 181, 2017
  24. Jiang GM, Li XW, Lan MN, Shen T, Lv XS, Dong F, Zhang S, Appl. Catal. B: Environ., 205, 532, 2017
  25. Jiang GM, Cao JW, Chen M, Zhang XM, Dong F, Appl. Surf. Sci., 458, 77, 2018
  26. Hu Y, Song X, Jiang SM, Wei CH, Chem. Eng. J., 274, 102, 2015
  27. Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC, Environ. Pollut., 120, 415, 2002
  28. Yu QL, Brouwers HJH, Appl. Catal. B: Environ., 92(3-4), 454, 2009
  29. Hu Y, Song X, Jiang SM, Wei CH, Chem. Eng. J., 274, 102, 2015