Issue
Korean Journal of Chemical Engineering,
Vol.37, No.9, 1490-1497, 2020
Coke combustion kinetics of spent Pt-Sn/Al2O3 catalysts in propane dehydrogenation
The kinetics of coke combustion was investigated by using a thermogravimetric analyzer (TGA) of coked catalysts which was used for propane dehydrogenation to determine the activation energy. Apart from the Pt/Al2O3 catalyst, four different Pt-Sn/Al2O3 catalysts were prepared by varying the Pt/Sn ratio from 3 : 0.5 to 3 : 3 by weight. The catalytic activity was measured by propane dehydrogenation at 620 °C. The reactant mixture consisting of C3H8 (30ml/ min) and H2 (30ml/min) was fed into the reactor for 5 h. A thermogravimetric analyzer in the presence of air was used to determine the amount of coke deposited and calculate the kinetic parameters for coke combustion. Three nonisothermal models (Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose) were used to determine the activation energy and the best model to fit the experimental data. The FWO model provided the best fit for 3Pt/Al2O3 and 3Pt-0.5Sn/Al2O3. The three models were equivalent for fitting the data for 3Pt-1Sn/Al2O3, 3Pt-2Sn/Al2O3, and 3Pt-3Sn/Al2O3. The activation energy increased with increasing Sn addition in the 3Pt/Al2O3 catalyst. Differences in the locations and the qualitative features of the cokes were suggested to interpret the results.
[References]
  1. Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM, Chem. Rev., 114(20), 10613, 2014
  2. Nawaz Z, Rev. Chem. Eng., 31(5), 413, 2015
  3. Bhasin MM, McCain JH, Vora BV, Imai T, Pujado PR, Appl. Catal. A: Gen., 221(1-2), 397, 2001
  4. Stagg SM, Querini CA, Alvarez WE, Resasco DE, J. Catal., 168(1), 75, 1997
  5. Vora BV, Top. Catal., 55, 1297, 2012
  6. Sattler JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, et al., Angew. Chem.-Int. Edit., 53, 9251, 2014
  7. Jung JW, Kim WI, Kim JR, Oh K, Koh HL, Catalysts, 9, 446, 2019
  8. Wang HZ, Sun LL, Sui ZJ, Zhu YA, Ye GH, Chen D, Zhou XG, Yuan WK, Ind. Eng. Chem. Res., 57(26), 8647, 2018
  9. Ochoa A, Ibarra A, Bilbao J, Arandes JM, Castano P, Chem. Eng. Sci., 171, 459, 2017
  10. Weisz PB, Goodwin RB, J. Catal., 6, 227, 1966
  11. Weisz BB, J. Catal., 6, 425, 1966
  12. Doolin PK, Hoffman JF, Mitchell MM, Appl. Catal., 71, 233, 1991
  13. Babich IV, Seshan K, Lefferts L, Appl. Catal. B: Environ., 59(3-4), 205, 2005
  14. Zagoruiko AN, Belyi AS, Smolikov MD, Noskov AS, Catal. Today, 220, 168, 2014
  15. Mehraban M, Shahraki BH, Fuel Process. Technol., 188, 172, 2019
  16. Luo S, He SB, Li XR, Li JQ, Bi WJ, Sun CL, Fuel Process. Technol., 129, 156, 2015
  17. Tiwari P, Deo M, AIChE J., 58(2), 505, 2012
  18. Das P, Tiwari P, Thermochim. Acta, 654, 191, 2017
  19. Han TU, Kim YM, Watanabe A, Teramae N, Park YK, Kim S, Korean J. Chem. Eng., 34(4), 1214, 2017
  20. Kim JW, Lee SH, Kim SS, Park SH, Jeon JK, Park YK, Korean J. Chem. Eng., 28(9), 1867, 2011
  21. Bartocci P, Tschentscher R, Stensrød RE, Barbanera M, Frantozzi F, Molecules, 24, 1657, 2019
  22. Friedman HL, J. Polym. Sci. C, 6, 183, 1964
  23. Kissinger H, J. Res. Natl. Bur. Stand., 57, 217, 1956
  24. Akahira T, Sunose T, Res. Rep. Chiba. Inst. Technol., 16, 22, 1971
  25. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881, 1965
  26. Flynn JH, Wall LA, Polym. Lett., 4, 323, 1966
  27. Doyle CD, J. Appl. Polym. Sci., 6, 639, 1961
  28. Criado JM, Thermochim. Acta, 24, 186, 1978
  29. Perez-Maqueda LA, Criado JM, Gotor FJ, Malek J, J. Phys. Chem. A, 106(12), 2862, 2002