Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1436-1439, 2020
Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology
We demonstrate ultra-fast fabrication of anode-supported solid oxide fuel cells (SOFCs) using microwaveassisted sintering technology. Due to the nature of microwaves that transfers heat directly into the material, the SOFC sintering process was completed within 8 h, ~ six times faster compared to a conventional sintering process (~47 h). Despite extremely rapid processing time, the microstructure of the SOFC fabricated by microwave-assisted sintering (M-SOFC) was almost identical to that of the conventionally sintered SOFC. Moreover, the electrochemical performance of the M-SOFC at 750 °C was 0.52 W/cm2 in peak power density, which is even higher than that of the conventionally sintered sample (0.49W/cm2). Thus, our results demonstrate that the ultra-fast microwave-assisted sintering process is a highly effective and practically promising technology for fabricating high performance SOFCs.
[References]
  1. Wachsman ED, Lee KT, Science, 334(6058), 935, 2011
  2. Lee KT, Yoon HS, Wachsman ED, J. Mater. Res., 27(16), 2063, 2012
  3. Myung JH, Neagu D, Miller DN, Irvine JTS, Nature, 537(7621), 528, 2016
  4. Wachsman ED, Marlowe CA, Lee KT, Energy Environ. Sci., 5(2), 5498, 2012
  5. Steele BC, Heinzel A, Nature, 414, 345, 2001
  6. Joh DW, Park JH, Kim D, Wachsman ED, Lee KT, ACS Appl. Mater. Interfaces, 9(10), 8443, 2017
  7. Park JH, Bae KT, Kim KT, Joh DW, Kim D, Myung JH, Lee KT, Ceram. Int., 45(9), 12154, 2019
  8. Kim J, Ahn J, Shin J, Yoon KJ, Son JW, Lee JH, Shin D, Lee HW, Ji HI, J. Mater. Chem. A, 7(16), 9958, 2019
  9. Zhang YH, Huang XQ, Lu Z, Liu ZG, Ge XD, Xu JH, Xin XS, Sha XQ, Su WH, J. Am. Ceram. Soc., 89(7), 2304, 2006
  10. Fowler DE, Messner AC, Miller EC, Slone BW, Barnett SA, Poeppelmeier KR, Chem. Mater., 27(10), 3683, 2015
  11. Thaheem I, Joh DW, Noh T, Lee KT, Int. J. Hydrog. Energy, 44(8), 4293, 2019
  12. Kim D, Park JW, Yun BH, Park JH, Lee KT, ACS Appl. Mater. Interfaces, 11(35), 31786, 2019
  13. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9(2), 1172, 2019
  14. Balaji T, Govindaiah R, Sharma M, Purushotham Y, Kumar A, Prakash T, Mater. Lett., 56(4), 560, 2002
  15. Camaratta R, Lima ANC, Reyes MD, Hernandez-Fenollosa MA, Messana JO, Bergmann CP, Mater. Res. Bull., 48(4), 1569, 2013
  16. Xie Z, Yang J, Huang X, Huang Y, J. European Ceram. Soc., 19(3), 381, 1999
  17. Fujitsu S, Ikegami M, Hayashi T, J. Am. Ceram. Soc., 83(8), 2085, 2000
  18. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 196(13), 5490, 2011
  19. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(24), 8019, 2010
  20. Gondolini A, Mercadelli E, Sanson A, Albonetti S, Doubova L, Boldrini S, Ceram. Int., 37(4), 1423, 2011
  21. Seyednezhad M, Rajabi A, Muchtar A, Somalu MR, Ceram. Int., 41(4), 5663, 2015
  22. Jiao ZJ, Shikazono N, Kasagi N, J. Power Sources, 195(1), 151, 2010
  23. Leonide A, Sonn V, Weber A, Ivers-Tiffee E, J. Electrochem. Soc., 155, B36, 2007
  24. Gansor P, Sabolsky K, Zondlo JW, Sabolsky EM, Mater. Lett., 105, 80, 2013