Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1419-1426, 2020
Colloidal synthetic methods of amorphous molybdenum phosphide nanoparticles for hydrogen evolution reaction catalysts
Transition metal phosphides (TMPs) have recently emerged as promising hydrogen evolution reaction (HER) catalytic alternatives to platinum. Among them, molybdenum phosphide (MoP) has attracted extensive attention due to its high electrical conductivity, good stability, and Pt-like electronic structure; however, there is no systematic comparison of its different colloidal synthetic routes. This study systematically compares two colloidal synthetic methods, one-pot and two-step, for amorphous MoP and the associated morphological changes during their reaction time. The amorphous MoP nanoparticles synthesized via the two-step method within 4 h exhibited the highest HER performance with an overpotential of 177 mV in 0.50 M H2SO4 for a current density of -10 mA cm 2; this might be due to their highly developed Mo-P bondings revealed by X-ray photoelectron spectroscopy analysis. Thus, this work demonstrates that the HER catalytic performance of MoP can be significantly influenced by its synthetic method and reaction time.
[References]
  1. Lubitz W, Tumas W, Chem. Rev., 107(10), 3900, 2007
  2. Turner JA, Science, 305, 972, 2004
  3. Lewis NS, Nocera DG, Proc. Natl. Acad. Sci. USA, 103, 15729, 2006
  4. Du P, Eisenberg R, Energy Environ. Sci., 5, 6012, 2012
  5. Bak T, Nowotny J, Rekas M, Sorrell CC, Int. J. Hydrog. Energy, 27(10), 991, 2002
  6. Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF, ACS Catal., 2, 1916, 2012
  7. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446, 2010
  8. Hara Y, Minami N, Matsumoto H, Itagaki H, Appl. Catal. A: Gen., 332(2), 289, 2007
  9. Gray HB, Nat. Chem., 1, 7, 2009
  10. Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Schaak RE, ACS Nano, 8, 11101, 2014
  11. Meyer S, Nikiforov AV, Petrushina IM, Kohler K, Christensen E, Jensen JO, Bjerrum NJ, Int. J. Hydrog. Energy, 40(7), 2905, 2015
  12. Chen WF, Muckerman JT, Fujita E, Chem. Commun., 49, 8896, 2013
  13. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X, Angew. Chem.-Int. Edit., 53, 6710, 2014
  14. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE, J. Am. Chem. Soc., 135(25), 9267, 2013
  15. Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF, Energy Environ. Sci., 8, 3022, 2015
  16. Kong D, Cha JJ, Wang H, Lee HR, Cui Y, Energy Environ. Sci., 6, 3553, 2013
  17. Tsai C, Chan K, Nørskov JK, Abild-Pedersen F, Surf. Sci., 640, 133, 2015
  18. Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I, Faraday Discuss., 140, 219, 2009
  19. Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Yamauchi Y, Adv. Mater., 31, 180713, 2019
  20. Huang Z, Chen Z, Chen Z, Lv C, Humphrey MG, Zhang C, Nano Energy, 9, 373, 2014
  21. Kibsgaard J, Jaramillo TF, Angew. Chem.-Int. Edit., 53, 14433, 2014
  22. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE, Angew. Chem.-Int. Edit., 53, 5427, 2014
  23. Xiao P, Chen W, Wang X, Adv. Eng. Mater., 5, 150098, 2015
  24. Shi Y, Zhang B, Chem. Soc. Rev., 45, 1529, 2016
  25. Ha DH, Han B, Risch M, Giordano L, Yao KPC, Karayaylali P, Shao-Horn Y, Nano Energy, 29, 37, 2016
  26. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE, Chem. Mater., 27, 3769, 2015
  27. Son CY, Kwak IH, Lim YR, Park J, Chem. Commun., 52, 2819, 2016
  28. Schipper DE, Zhao Z, Thirumalai H, Leitner AP, Donaldson SL, Kumar A, Whitmire KH, Chem. Mater., 30, 3588, 2018
  29. Feng L, Vrubel H, Bensimon M, Hu X, Phys. Chem. Chem. Phys., 16, 5917, 2014
  30. Stern LA, Feng L, Song F, Hu X, Energy Environ. Sci., 8, 2347, 2015
  31. McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Read CG, Lewis NS, Schaak RE, Chem. Commun., 50, 11026, 2014
  32. Xing ZC, Liu Q, Asiri AM, Sun XP, Adv. Mater., 26(32), 5702, 2014
  33. McEnaney JM, Crompton JC, Callejas JF, Popczun EJ, Biacchi AJ, Lewis NS, Schaak RE, Chem. Mater., 26, 4826, 2014
  34. Xiao W, Zhang L, Bukhvalov D, Chen Z, Zou Z, Shang L, Zhang T, Nano Energy, 70, 104445, 2020
  35. Yan H, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H, Chem. Commun., 52, 9530, 2016
  36. Vrubel H, Hu X, Angew. Chem.-Int. Edit., 51, 12703, 2012
  37. Park H, Encinas A, Scheifers JP, Zhang Y, Fokwa BPT, Angew. Chem.-Int. Edit., 56, 5575, 2017
  38. Jin YS, Wang HT, Li JJ, Yue X, Han YJ, Shen PK, Cui Y, Adv. Mater., 28(19), 3785, 2016
  39. Lu Z, Zhang H, Zhu W, Yu X, Kuang Y, Chang Z, Sun X, Chem. Commun., 49, 7516, 2013
  40. Wang DZ, Pan Z, Wu ZZ, Wang ZP, Liu ZH, J. Power Sources, 264, 229, 2014
  41. Mitsutaka O, Susumu T, Masakazu I, Masatake H, Chem. Lett., 27, 315, 1998
  42. Li W, Shah SI, Huang CP, Jung O, Ni C, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 96, 247, 2002
  43. Christensen ST, Feng H, Libera JL, Guo N, Miller JT, Stair PC, Elam JW, Nano Lett., 10, 3047, 2010
  44. Christensen ST, Elam JW, Rabuffetti FA, Ma Q, Weigand SJ, Lee B, Bedzyk MJ, Small, 5, 750, 2009
  45. Tsai SC, Song YL, Tsai CS, Yang CC, Chiu WY, Lin HM, J. Mater. Sci., 39(11), 3647, 2004
  46. Teoh WY, Amal R, Madler L, Nanoscale, 2, 1324, 2010
  47. Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T, J. Nanopart. Res., 11, 1193, 2009
  48. Zhou ZY, Tian N, Huang ZZ, Chen DJ, Sun SG, Faraday Discuss., 140, 81, 2009
  49. Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Meng F, ChemPhysChem., 5, 68, 2004
  50. Donega CDM, Chem. Soc. Rev., 40, 1512, 2011
  51. Nie ZH, Petukhova A, Kumacheva E, Nat. Nanotechnol., 5(1), 15, 2010
  52. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV, Chem. Rev., 110(1), 389, 2010
  53. Cho G, Park Y, Hong YK, Ha DH, Nano Convergence, 6, 17, 2019
  54. Lindstedt E, Reitti M, Olofsson B, J. Org. Chem., 82, 11909, 2017
  55. Dong H, Zhu M, Yoon JA, Gao H, Jin R, Matyjaszewski K, J. Am. Chem. Soc., 30, 12852, 2008
  56. Hussain F, Shaban SM, Kim JH, Kim DH, Korean J. Chem. Eng., 36(6), 988, 2019
  57. Park J, Joo J, Kwon SG, Jang Y, Hyeon T, Angew. Chem.-Int. Edit., 46, 4630, 2007
  58. Muthuswamy E, Kharel PR, Lawes G, Brock SL, ACS Nano, 3, 2383, 2009
  59. Liu J, Meyns M, Zhang T, Arbiol J, Cabot A, Shavel A, Chem. Mater., 30, 1799, 2018
  60. Doan-Nguyen VVT, Zhang S, Trigg EB, Agarwal R, Li J, Su D, Murray CB, ACS Nano, 9, 8108, 2015
  61. Tessier MD, De Nolf K, Dupont D, Sinnaeve D, De Roo J, Hens Z, J. Am. Chem. Soc., 138(18), 5923, 2016
  62. Li H, Jia C, Meng X, Li H, Front. Chem., 6, 6, 2019
  63. Cho G, Park Y, Kang H, Hong YK, Lee T, Ha DH, Appl. Surf. Sci., 510, 145427, 2020
  64. Ryu J, Jung N, Jang JH, Kim HJ, Yoo SJ, ACS Catal., 5, 4066, 2015
  65. Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE, Chem. Mater., 27, 3769, 2015
  66. Laursen AB, Patraju KR, Whitaker MJ, Retuerto M, Sarkar T, Yao N, Dismukes GC, Energy Environ. Sci., 8, 1027, 2015
  67. Hou M, Teng X, Wang J, Liu Y, Guo L, Ji L, Chen Z, Nanoscale, 10, 14594, 2018
  68. Dury F, Gaigneaux EM, Catal. Today, 117(1-3), 46, 2006
  69. Kibsgaard J, Jaramillo TF, Angew. Chem.-Int. Edit., 53, 14433, 2014
  70. Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Yan YM, J. Mater. Chem. A, 4, 59, 2016
  71. Anjum MAR, Lee JS, ACS Catal., 7, 3030, 2017