Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1411-1418, 2020
Hybrid Pd38 nanocluster/Ni(OH)2-graphene catalyst for enhanced HCOOH dehydrogenation: First principles approach
Hydrogen energy is a potential next-generation energy source for fossil fuel replacement. The development of high-efficiency materials and catalysts for storage and transportation of hydrogen energy must be achieved to realize hydrogen economy. Recently, catalyst systems such as Pd nanoclusters (Pd NCs) supported on nickel hydroxide (Ni(OH)2) have been reported to have advantages, including effective suppression of CO production and efficiency enhancement of HCOOH dehydrogenation. However, the reaction mechanism and multi-metallic interface system design of such systems have not been elucidated. Therefore, various Ni(OH)2 surfaces supported on a graphene system were designed through density functional theory calculations, and the support material was combined with Pd38NC (Pd38NC/Ni(OH)2-G). Subsequently, the adsorption behavior of HCOOH dehydrogenation intermediates was analyzed. We found a new adsorption configuration in which HCOOH* (where * and a single underline indicates the adsorbed species and adsorbed atom, respectively) was adsorbed in a more stable manner (adsorption energy, Eads= -1.22 eV) on the system than HCOOH* (Eads=-1.10 eV) owing to the presence of Ni(OH)2-G. This affected the next step in HCOOH dehydrogenation, i.e., formation of HCOO* species, and showed a positive effect on the HCOOH dehydrogenation. To fundamentally understand this phenomenon, electronic structure (d-band center and density of states) and stability (vacancy formation energy) analyses were performed.
[References]
  1. Yang J, Sudik A, Wolverton C, Siegel DJ, Chem. Soc. Rev., 39, 656, 2010
  2. Grasemann M, Laurenczy G, Energy Environ. Sci., 5, 8171, 2012
  3. Singh AK, Singh S, Kumar A, Catal. Sci. Technol., 6, 12, 2016
  4. Boddien A, Loges B, Gartner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M, J. Am. Chem. Soc., 132(26), 8924, 2010
  5. Mellmann D, Sponholz P, Junge H, Beller M, Chem. Soc. Rev., 45, 3954, 2016
  6. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M, ACS Catal., 4, 4434, 2014
  7. Bulushev DA, Beloshapkin S, Ross JRH, Catal. Today, 154(1-2), 7, 2010
  8. Hattori M, Einaga H, Daio T, Tsuji M, J. Mater. Chem. A, 3, 4453, 2015
  9. Huang Y, Zhou X, Yin M, Liu C, Xing W, Chem. Mater., 22, 5122, 2010
  10. Chen GX, Zhao Y, Fu G, Duchesne PN, Gu L, Zheng YP, Weng XF, Chen MS, Zhang P, Pao CW, Lee JF, Zheng NF, Science, 344(6183), 495, 2014
  11. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM, Science, 334(6060), 1256, 2011
  12. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM, Nat. Mater., 11(6), 550, 2012
  13. Huang W,Wang H, Zhou J, Wang J, Duchesne PN, Muir D, et al., Nat. Commun., 6, 10035, 2015
  14. Yan JM, Wang ZL, Gu L, Li SJ, Wang HL, Zheng WT, Jiang Q, Adv. Eng. Mater., 5, 150010, 2015
  15. Sun Q, Wang N, Bing Q, Si R, Liu J, Bai R, Zhang P, Jia M, Yu J, Chem., 3, 477, 2017
  16. Kou R, Shao YY, Mei DH, Nie ZM, Wang DH, Wang CM, Viswanathan VV, Park S, Aksay IA, Lin YH, Wang Y, Liu J, J. Am. Chem. Soc., 133(8), 2541, 2011
  17. Jafri RI, Rajalakshmi N, Ramaprabhu S, J. Mater. Chem., 20, 7114, 2010
  18. Dong L, Gari RRS, Li Z, Craig MM, Hou S, Carbon, 48, 781, 2010
  19. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132, 2010
  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666, 2004
  21. Lim DH, Negreira AS, Wilcox J, J. Phys. Chem. C, 115, 8961, 2011
  22. Lim DH, Wilcox J, J. Phys. Chem. C, 115, 22742, 2011
  23. Lim DH, Jo JH, Shin DY, Wilcox J, Ham HC, Nam SW, Nanoscale, 6, 5087, 2014
  24. Shin DY, Kim MS, Kwon JA, Shin YJ, Yoon CW, Lim DH, J. Phys. Chem. C, 123, 1539, 2019
  25. Wang HL, Casalongue HS, Liang YY, Dai HJ, J. Am. Chem. Soc., 132(21), 7472, 2010
  26. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169, 1996
  27. Kresse G, Joubert D, Phys. Rev. B, 59, 1758, 1999
  28. Blochl PE, Phys. Rev. B, 50, 17953, 1994
  29. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865, 1996
  30. Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188, 1976
  31. Methfessel M, Paxton AT, Phys. Rev. B, 40, 3616, 1989
  32. Tkalych AJ, Yu K, Carter EA, J. Phys. Chem. C, 119, 24315, 2015
  33. Grimme S, J. Comput. Chem., 27, 1787, 2006
  34. Sakurai M, Watanabe K, Sumiyama K, Suzuki K, J. Chem. Phys., 111(1), 235, 1999
  35. Dyall KG, Theoretical Chemistry Accounts, 117, 459, 2007
  36. Howalt JG, Bligaard T, Rossmeisl J, Vegge T, Phys. Chem. Chem. Phys., 15, 7785, 2013
  37. Kazimirov VY, Smirnov MB, Bourgeois L, Guerlou-Demourgues L, Servant L, Balagurov AM, Natkaniec I, Khasanova NR, Antipov EV, Solid State Ion., 181(39-40), 1764, 2010
  38. Mukhopadhyay G, Behera H, arXiv:1306.0809 (2013).
  39. Yan J, Wang Q, Wei T, Fan Z, Adv. Eng. Mater., 4, 130081, 2014
  40. Wu Z, Huang XL, Wang ZL, Xu JJ, Wang HG, Zhang XB, Sci. Rep., 4, 3669, 2014
  41. Qi Y, Liu Y, Zhu R, Wang Q, Luo Y, Zhu C, Lyu Y, New J. Chem., 43, 3091, 2019
  42. Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F, ACS Catal., 4, 1226, 2014
  43. Wang P, Steinmann SN, Fu G, Michel C, Sautet P, ACS Catal., 7, 1955, 2017
  44. Xu H, Chu W, Sun W, Jiang C, Liu Z, RSC Adv., 6, 96545, 2016
  45. Hammer B, Nørskov JK, Surf. Sci., 343, 211, 1995
  46. Hammer B, Nørskov JK, Adv. Catal., 45, 71, 2000
  47. Vojvodic A, Nørskov J, Abild-Pedersen F, Top. Catal., 57, 25, 2014