Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1401-1410, 2020
In situ exsolution of Rh nanoparticles on a perovskite oxide surface: Efficient Rh catalysts for Dry reforming
The catalytic activity of the Rh-exsolved Sr0.92Y0.08Ti2O3-δ perovskite catalyst (SYTRh5) was examined for dry reforming of methane. The exsolution of the Rh nanoparticles over the SYT perovskite oxide surface was carried out under various reducing environments where the extent of Rh exsolution was significantly determined by the reduction time (4, 12, 24 h) and temperature (800, 900, 1,000 °C). STYRh5 catalysts treated at a longer reduction time and a higher reduction temperature revealed formation of larger metallic Rh nanoparticles on the perovskite oxide with higher surface concentration. For dry reforming activity, the SYTRh5 catalysts reduced at 900 and 1,000 °C for 24 h showed significantly higher methane conversion compared to others. The high catalytic performance of the SYTRh5 (900 and 1,000 °C, 24 h) catalysts was attributed to the high coke-resistance of the larger Rh-exsolved nanoparticles and stronger anchoring sites resulted from the exsolution process. Post-analysis TEM images exhibited limited carbon deposition and particle agglomeration of Rh over the SYTRh5 (900 and 1,000 °C, 24 h) catalysts. Lastly, in-situ H2S poisoning was conducted to examine the regeneration ability of SYTRh5. Although catalyst deactivation was observed, the catalytic activity of SYTRh5 (900 and 1,000 °C, 24 h) was completely recovered to the original level once the H2S flow was interrupted, indicating facile desorption of sulfur species from the Rh-exsolved nanoparticles.
[References]
  1. Minutillo M, Perna A, JanneIli E, Int. J. Hydrog. Energy, 39(36), 21688, 2014
  2. Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381, 2016
  3. Huan Y, Li YN, Yin BY, Ding D, Wei T, J. Power Sources, 359, 384, 2017
  4. Frattini D, Accardo G, Moreno A, Yoon SP, Han JH, Nam SW, J. Ind. Eng. Chem., 56, 285, 2017
  5. Shajahan I, Ahn J, Nair P, Medisetti S, Patil S, Niveditha V, Babu GUB, Dasari HP, Lee JH, Mater. Chem. Phys., 216, 136, 2018
  6. Spiridigliozzi L, Dell’Agli G, Marocco A, Accardo G, Pansini M, Yoon SP, Ham HC, Frattini D, J. Ind. Eng. Chem., 59, 17, 2018
  7. Pikalova E, Kolchugin A, Filonova E, Bogdanovich N, Pikalov S, Ananyev M, Molchanova N, Farlenkov A, Solid State Ion., 319, 130, 2018
  8. Li C, Shi YX, Cai NS, J. Power Sources, 195(8), 2266, 2010
  9. Arato E, Audasso E, Barelli L, Bosio B, Discepoli G, J. Power Sources, 330, 18, 2016
  10. Kim TY, Kim BS, Park TC, Yeo YK, Korean J. Chem. Eng., 35(1), 118, 2018
  11. Sarmah P, Gogoi TK, Energy Conv. Manag., 132, 91, 2017
  12. Patcharavorachot Y, Saebea D, Authayanun S, Arpornwichanop A, Int. J. Hydrog. Energy, 43(37), 17821, 2018
  13. Hou QL, Zhao HB, Yang XY, Energy, 150, 434, 2018
  14. Barelli L, Bidini G, Ottaviano A, Energy, 118, 716, 2017
  15. Tagawa T, Yanase A, Goto S, Yamaguchi M, Kondo M, J. Power Sources, 126(1-2), 1, 2004
  16. Jang WJ, Jung YS, Shim JO, Roh HS, Yoon WL, J. Power Sources, 378, 597, 2018
  17. Shtyka O, Zakrzewski M, Ciesielski R, Kedziora A, Dubkov S, Ryazanov R, Szynkowska M, Maniecki T, Korean J. Chem. Eng., 37(2), 209, 2020
  18. Lee KJ, Koomson S, Lee CG, Korean J. Chem. Eng., 36(4), 600, 2019
  19. Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5, 916, 2013
  20. Wei T, Jia LC, Zheng HY, Chi B, Pu J, Li J, Appl. Catal. A: Gen., 564, 199, 2018
  21. Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble SR, Gorte RJ, Vohs JM, Irvine JTS, Nat. Commun., 6, 8120, 2015
  22. Palcheva R, Olsbye U, Palcut M, Rauwel P, Tyuliev G, Velinov N, Fjellvag HH, Appl. Surf. Sci., 357, 45, 2015
  23. Park S, Kim Y, Han H, Chung YS, Yoon W, Choi J, Kim WB, Appl. Catal. B: Environ., 248, 147, 2019
  24. Papargyriou D, Miller DN, Irvine JTS, J. Mater. Chem. A, 7, 15812, 2019
  25. Zubenko D, Singh S, Rosen BA, Appl. Catal. B: Environ., 209, 711, 2017
  26. Chai Y, Fu Y, Feng H, Yuan C, Kong W, Pan B, Zhang J, Sun Y, ChemCatChem, 10, 2078, 2018
  27. Oh JH, Kwon BW, Cho J, Lee CH, Kim MK, Choi SH, Yoon SP, Han J, Nam SW, Kim JY, Jang SS, Lee KB, Ham HC, Ind. Eng. Chem. Res., 58(16), 6385, 2019
  28. Papaioannou EI, Neagu D, Ramli WKW, Irvine JTS, Metcalfe IS, Top. Catal., 62, 1149, 2019
  29. Kim GS, Lee BY, Accardo G, Ham HC, Moon J, Yoon SP, J. Power Sources, 423, 305, 2019
  30. Kwon BW, Oh JH, Kim GS, Yoon SP, Han J, Nam SW, Ham HC, Appl. Energy, 227, 213, 2018
  31. Kim GS, Lee BY, Ham HC, Han J, Nam SW, Moon J, Yoon SP, Int. J. Hydrog. Energy, 44(1), 202, 2019
  32. Munoz A, Munuera G, Malet P, Gonzalez-Elipe AR, Espinos JP, Surf. Interface Anal., 12, 247, 1988
  33. Borg HJ, Van Den Oetelaar LCA, Niemantsverdriet JW, Catal. Lett., 17, 81, 1993
  34. Faroldi B, Munera J, Falivene JM, Ramos IR, Garcia AG, Fernandez LT, Carrazan SG, Cornaglia L, Int. J. Hydrog. Energy, 42(25), 16127, 2017
  35. Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE, J. Catal., 158(1), 51, 1996
  36. Ligthart DAJM, van Santen RA, Hensen EJM, J. Catal., 280(2), 206, 2011