Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1394-1400, 2020
Electrochemical impedance analysis of proton exchange membrane fuel cells with various cathode configurations
Various porous flow fields have been proposed and developed for the cathode configuration of proton exchange membrane fuel cells to replace conventional channel-land flow fields. This study demonstrates the physical properties of porous metallic flow field and gas diffusion layers and quantifies the respective resistances during the oxygen reduction reaction in proton exchange membrane fuel cells with four different cathode configurations using electrochemical impedance spectroscopy and a theoretical model. The contribution of the flow field and gas diffusion layer to the oxygen reduction reaction is discussed, along with the relationship between the physical properties of these structures and water transport in the proton exchange membrane fuel cell.
[References]
  1. Chalk SG, Miller JE, J. Power Sources, 159(1), 73, 2006
  2. Park S, Shao Y, Liu J, Wang Y, Energy Environ. Sci., 5, 9931, 2012
  3. Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349, 2010
  4. Ahluwalia RK, Wang XH, J. Power Sources, 177(1), 167, 2008
  5. Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264, 2013
  6. Kandlikar SG, Lu Z, Appl. Therm. Eng., 29, 1276, 2009
  7. Aiyejina A, Sastry MKS, J. Fuel Cell Sci. Tech., 9, 1, 2012
  8. Cho KT, Mench MM, Int. J. Hydrog. Energy, 35(22), 12329, 2010
  9. Li WK, Zhang QL, Wang C, Yan XH, Shen SY, Xia GF, Zhu FJ, Zhang JL, Appl. Energy, 195, 278, 2017
  10. Manso AP, Marzo FF, Barranco J, Garikano X, Mujika MG, Int. J. Hydrog. Energy, 37(20), 15256, 2012
  11. Asri NF, Husaini T, Sulong A, Majlan EH, Daud WRW, Int. J. Hydrog. Energy, 42(14), 9135, 2017
  12. Baker DR, Caulk DA, Neyerlin KC, Murphy MW, J. Electrochem. Soc., 156(9), B991, 2009
  13. Nonoyama N, Okazaki S, Weber AZ, Ikogi Y, Yoshida T, J. Electrochem. Soc., 158(4), B416, 2011
  14. Mashio T, Ohma A, Yamamoto S, Shinohara K, ECS Trans., 11, 529, 2007
  15. Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850, 2012
  16. St-Pierre J, Fuel Cells, 2, 263, 2011
  17. Cindrella L, Kannan AM, Lin JF, Saminathan K, Ho Y, Lin CW, Wertz J, J. Power Sources, 194(1), 146, 2009
  18. Park S, Lee JW, Popov BN, J. Power Sources, 163(1), 357, 2006
  19. Park S, Popov BN, Fuel, 90(1), 436, 2011
  20. Manahan MP, Hatzell MC, Kumbur EC, Mench MM, J. Power Sources, 196(13), 5573, 2011
  21. Manahan MP, Mench MM, J. Electrochem. Soc., 159(7), F322, 2012
  22. Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 218, 341, 2012
  23. Sim Y, Kwak J, Kim S, Jo Y, Kim S, Kim S, Kim J, Lee C, Jo J, Kwon S, J. Mater. Chem. A, 6, 1504, 2018
  24. Joo D, Jin SM, Jang JH, Park S, Fuel Cells, 18, 57, 2018
  25. Srouji AK, Zheng LJ, Dross R, Turhan A, Mench MM, J. Power Sources, 239, 433, 2013
  26. Srouji AK, Zheng LJ, Dross R, Aaron D, Mench MM, J. Power Sources, 364, 92, 2017
  27. Kim JR, Yi JS, Song TW, J. Power Sources, 220, 54, 2012
  28. Yi JS, Song TW, J. Electrochem. Soc., 160(2), F141, 2013
  29. Kwon K, Park JO, Yoo DY, Yi JS, Electrochim. Acta, 54(26), 6570, 2009
  30. Makharia R, Mathias MF, Baker DR, J. Electrochem. Soc., 152(5), A970, 2005
  31. Malevich D, Jayasankar BR, Halliop E, Pharoah JG, Peppley BA, Karan K, J. Electrochem. Soc., 159(12), F888, 2012
  32. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587, 1996
  33. Guo QZ, White RE, J. Electrochem. Soc., 151(4), E133, 2004
  34. Schneider IA, Freunberger SA, Kramer D, Wokaun A, Scherer GG, J. Electrochem. Soc., 154(4), B383, 2007
  35. Cetinbas FC, Ahluwalia RK, Shum AD, Zenyuk IV, J. Electrochem. Soc., 166(7), F3001, 2019