Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1387-1393, 2020
Composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles having an average size of 1.7 nm for hydrolytic dehydrogenation of ammonia borane
We investigated composition-dependent catalytic activity of bimetallic PtPd dendrimer-encapsulated nanoparticles (DENs) that had a uniform size of ~1.7 nm for hydrolytic dehydrogenation of ammonia borane (AB). The PtPd DENs, composed of seven different Pt : Pd ratios, were synthesized using hydroxyl-terminated sixth-generation polyamidoamine dendrimers as a molecular template. The dendrimer-templating method allowed for synthesizing bimetallic PtPd DENs with controllable nanoparticle composition while fixing the size of the nanoparticles uniformly at ~1.7 nm. Compared with monometallic Pt and Pd DENs, the bimetallic PtPd DENs showed superior catalytic activity for the hydrolytic dehydrogenation of AB. Furthermore, the bimetallic PtPd DENs exhibited composition-dependent activity with the maximum activity (i.e., average turnover frequency=108.5 ± 15.9mol H2ㆍmol atomPt+Pd -1ㆍmin-1) at a Pt : Pd ratio of 1 : 1 for the catalytic hydrolysis of AB.
[References]
  1. Stephens FH, Pons V, Baker RT, Dalton Trans., 25, 2613, 2007
  2. Smythe NC, Gordon JC, Eur. J. Inorg. Chem., 2010, 509, 2010
  3. Hamilton CW, Baker RT, Staubitz A, Manners I, Chem. Soc. Rev., 38, 279, 2009
  4. Jiang HL, Xu Q, Catal. Today, 170(1), 56, 2011
  5. Xu Q, Chandra M, J. Alloy. Compd., 446-447, 729, 2007
  6. Zhan WW, Zhu QL, Xu Q, ACS Catal., 6, 6892, 2016
  7. Sun D, Mazumder V, Metin O, Sun S, ACS Nano, 2, 6458, 2011
  8. Lu ZH, Li JP, Zhu AL, Yao QL, Huang W, Zhou RY, Zhou RF, Chen XS, Int. J. Hydrog. Energy, 38(13), 5330, 2013
  9. Dai HM, Su J, Hu K, Luo W, Cheng GZ, Int. J. Hydrog. Energy, 39(10), 4947, 2014
  10. Peng X, Pan Q, Rempel GL, Chem. Soc. Rev., 37, 1619, 2008
  11. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ, Chem. Soc. Rev., 41, 8099, 2012
  12. Tao F, Chem. Soc. Rev., 41, 7977, 2012
  13. Wang AQ, Liu XY, Mou CY, Zhang T, J. Catal., 308, 258, 2013
  14. Rakap M, J. Power Sources, 276, 320, 2015
  15. Zhang Z, Jiang Y, Chi M, Yang Z, Wang C, Lu X, RSC Adv., 5, 94456, 2015
  16. Amali AJ, Aranishi K, Uchida T, Xu Q, Part. Part. Syst. Charact., 30(10), 888, 2013
  17. Yao K, Zhao C, Wang N, Li T, Lu W, Wang J, Nanoscale, 12, 638, 2020
  18. Wang Z, Zhang H, Chen L, Miao S, Wu S, Hao X, Zhang W, Jia M, J. Phys. Chem. C, 122, 12975, 2018
  19. Zhao MQ, Sun L, Crooks RM, J. Am. Chem. Soc., 120(19), 4877, 1998
  20. Balogh L, Tomalia DA, J. Am. Chem. Soc., 120(29), 7355, 1998
  21. Scott RWJ, Wilson OM, Crooks RM, J. Phys. Chem. B, 109(2), 692, 2005
  22. Zhao M, Crooks RM, Angew. Chem.-Int. Edit., 38, 364, 1999
  23. Zhao MQ, Crooks RM, Adv. Mater., 11(3), 217, 1999
  24. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK, Accounts Chem. Res., 34, 181, 2001
  25. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM, Chem. Sci., 2, 1632, 2011
  26. Niu YH, Yeung LK, Crooks RM, J. Am. Chem. Soc., 123(28), 6840, 2001
  27. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, Nano Lett., 2, 999, 2002
  28. Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GK, J. Am. Chem. Soc., 139(49), 18084, 2017
  29. Ke DD, Li Y, Wang J, Zhang L, Wang JD, Zhao X, Yang SQ, Han SM, Int. J. Hydrog. Energy, 41(4), 2564, 2016
  30. Esumi K, Isono R, Yoshimura T, Langmuir, 20(1), 237, 2004
  31. Ye HC, Crooks RM, J. Am. Chem. Soc., 127(13), 4930, 2005
  32. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(6), 1604, 2004
  33. Li Y, El-Sayed MA, J. Phys. Chem. B, 105(37), 8938, 2001
  34. Garcia-Martinez JC, Lezutekong R, Crooks RM, J. Am. Chem. Soc., 127(14), 5097, 2005
  35. Cho T, Yoon CW, Kim J, Langmuir, 34(25), 7436, 2018
  36. Lim H, Ju Y, Kim J, Anal. Chem., 88, 4751, 2016
  37. Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A, Nat. Chem., 1, 397, 2009
  38. Ye HC, Crooks RM, J. Am. Chem. Soc., 129(12), 3627, 2007
  39. Chung YM, Rhee HK, Catal. Lett., 85(3-4), 159, 2003
  40. Chung YM, Rhee HK, Catal. Surv. from Asia, 8, 211, 2004
  41. Aranishi K, Singh AK, Xu Q, ChemCatChem, 5, 2248, 2013
  42. Scott RWJ, Datye AK, Crooks RM, J. Am. Chem. Soc., 125(13), 3708, 2003
  43. Ju Y, Kim J, Chem. Commun., 51, 13752, 2015
  44. Ye H, Crooks JA, Crooks RM, Langmuir, 23(23), 11901, 2007
  45. Bertolini JC, Appl. Catal. A: Gen., 191(1-2), 15, 2000
  46. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM, J. Am. Chem. Soc., 127(5), 1380, 2005
  47. Lewis EA, Slater TJA, Prestat E, Macedo A, O'Brien P, Camargo PHC, Haigh SJ, Nanoscale, 6, 13598, 2014
  48. Wang CM, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM, Sci. Rep., 4, 3683, 2014
  49. Davey WP, Phys. Rev., 25, 753, 1925
  50. Wu J, Shan S, Cronk H, Chang F, Kareem H, Zhao Y, Luo J, Petkov V, Zhong CJ, J. Phys. Chem. C, 121, 14128, 2017
  51. Zhang H, Jin M, Liu H, Wang J, Kim MJ, Yang D, Xie Z, Liu J, Xia Y, ACS Nano, 5, 8212, 2011
  52. Chandra M, Xu Q, J. Power Sources, 156(2), 190, 2006