Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1379-1386, 2020
Electrodeposited nickel phosphide supported by copper foam for proton exchange membrane water electrolyzer
The development of high-performance and low-cost electrodes is essential for hydrogen production using a proton exchange membrane water electrolyzer (PEMWE). Herein, we report an electrochemical method for the fabrication of a Ni-P based cathode for a PEMWE single cell. A porous copper foam (CF) is fabricated on carbon paper (CP) by two-step electrodeposition to obtain a large number of active sites for Ni-P formation. The high conductivity of the Cu metallic support is expected to reduce the charge transfer resistance. After the Ni-P electrodeposition on CF, an anodic leaching process is conducted for the selective dissolution of the excess Ni metal formed during the electrodeposition, thus enabling the modification of the electronic structure of the catalyst. The electrode optimized in halfcell tests is used as the cathode for a PEMWE single cell. The PEMWE cells exhibit a current density of 0.67 A/cm2 at 2.0 Vcell which is higher than or comparable to the performance previously reported in the literature.
[References]
  1. Turner JA, Science, 305, 972, 2004
  2. Khaselev O, Turner JA, Science, 280(5362), 425, 1998
  3. Wang M, Wang Z, Gong X, Guo Z, Renew. Sust. Energ. Rev., 29, 573, 2014
  4. Hosseini SE, Wahid MA, Renew. Sust. Energ. Rev., 57, 850, 2016
  5. Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901, 2013
  6. Pavel CC, Cecconi F, Emiliani C, Santiccioli S, Scaffidi A, Catanorchi S, Comotti M, Angew. Chem.-Int. Edit., 53, 1378, 2014
  7. Zou X, Zhang Y, Chem. Soc. Rev., 44, 5148, 2015
  8. Lee BS, Ahn SH, Park HY, Choi I, Yoo SJ, Kim HJ, Henkensmeier D, Kim JY, Park S, Nam SW, Lee KY, Jang JH, Appl. Catal. B: Environ., 179, 285, 2015
  9. Holladay JD, Hu J, King DL, Wang Y, Catal. Today, 139, 244, 2009
  10. Yu H, Bonville L, Jankovic J, Maric R, Appl. Catal. B: Environ., 260, 118194, 2020
  11. Ojha K, Saha S, Dagar P, Ganguli AK, Phys. Chem. Chem. Phys., 20, 6777, 2018
  12. Kim JH, Kim JY, Kim HK, Kim JY, Ahn SH, J. Ind. Eng. Chem., 79, 255, 2019
  13. Kim H, Hwang E, Park H, Lee BS, Jang JH, Kim HJ, Ahn SH, Kim SK, Appl. Catal. B: Environ., 206, 608, 2017
  14. Chen J, Yang Y, Su J, Jiang P, Xia G, Chen Q, ACS Appl. Mater. Interfaces, 9, 3596, 2017
  15. Masa J, Barwe S, Andronescu C, Sinev I, Ruff A, Jayaramulu K, Elumeeva K, Konkena B, Cuenya BR, Schuhmann W, ACS Energy Lett., 1, 1192, 2016
  16. Wang X, Kolen'ko YV, Bao XQ, Kovnir K, Liu L, Angew. Chem.-Int. Edit., 54, 8188, 2015
  17. Cao PF, Peng J, Li JQ, Zhai ML, J. Power Sources, 347, 210, 2017
  18. Giovanni CD, Reyes-Carmona A, Coursier A, Nowak S, et al., ACS Catal., 6, 2626, 2016
  19. Gupta S, Patel N, Miotello A, Kothari DC, J. Power Sources, 279, 620, 2015
  20. Xu XS, Deng YX, Gu MH, Sun BT, Liang ZQ, Xue YJ, Guo YC, Tian J, Cui HZ, Appl. Surf. Sci., 470, 591, 2019
  21. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR, Angew. Chem.-Int. Edit., 51, 6131, 2012
  22. Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y, Chem. Sci., 5, 4615, 2014
  23. Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF, Energy Environ. Sci., 8, 3022, 2015
  24. Wang F, Shifa TA, Zhan X, Huang Y, Liu K, Cheng Z, Jiang C, He J, Nanoscale, 7, 19764, 2015
  25. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE, J. Am. Chem. Soc., 135(25), 9267, 2013
  26. Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C, J. Mater. Chem. A, 3, 1656, 2015
  27. Chung YH, Gupta K, Jang JH, Park HS, Jang I, Jang JH, Lee YK, Lee SC, Yoo SJ, Nano Energy, 26, 496, 2016
  28. Li Y, Zhao C, Chem. Mater., 28, 5659, 2016
  29. Wang X, Tong R, Wang Y, Tao H, Zhang Z, Wang H, ACS Appl. Mater. Interfaces, 8, 34270, 2016
  30. Kim J, Kim H, Kim J, Kim JH, Ahn SH, J. Alloy. Compd., 807, 148813, 2019
  31. Ma X, Chang Y, Zhang Z, Tang J, J. Mater. Chem. A, 6, 2100, 2018
  32. Zhang C, Xie YC, Deng H, Zhang C, Su JW, Dong Y, Lin J, Int. J. Hydrog. Energy, 43(15), 7299, 2018
  33. Yang X, Lu AY, Zhu Y, Hedhili MN, Min S, Huang KW, Han Y, Li LJ, Nano Energy, 15, 634, 2015
  34. Pan Y, Liu YQ, Liu CG, J. Power Sources, 285, 169, 2015
  35. Pan Y, Lin Y, Chen Y, Liu Y, Liu C, J. Mater. Chem. A, 4, 4745, 2016
  36. Siracusano S, Van Dijk N, Payne-Johnson E, Baglio V, Arico AS, Appl. Catal. B: Environ., 164, 488, 2015
  37. Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK, Nanoscale, 9, 19045, 2017
  38. Kim JH, Kim H, Kim J, Lee HJ, Jang JH, Ahn SH, J. Power Sources, 392, 69, 2018
  39. Ledendecker M, Mondschein JS, Kasian O, Geiger S, Gohl D, et al., Angew. Chem.-Int. Edit., 56, 9767, 2017
  40. Kucernak ARJ, Sundaram VNN, J. Mater. Chem. A, 2, 17435, 2014
  41. Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, Fujita T, Tang Z, Chen M, Energy Environ. Sci., 9, 2257, 2016
  42. Kim J, Kim J, Kim H, Ahn SH, ACS Appl. Mater. Interfaces, 11, 30774, 2019
  43. Lin JD, Chou CT, Surf. Coat., 325, 360, 2017
  44. Vosoughi V, Badoga S, Dalai AK, Abatzoglou N, Ind. Eng. Chem. Res., 55(21), 6049, 2016
  45. Nam D, Kim R, Han D, Kim J, Kwon H, Electrochim. Acta, 56(25), 9397, 2011
  46. amilton JC, Farmer JC, Anderson RJ, J. Electrochem. Soc., 133, 739, 1986
  47. Yan L, Dai P, Wang Y, Gu X, Li L, Cao L, Zhao X, ACS Appl. Mater. Interfaces, 9, 11642, 2017
  48. Zhou Z, Wei L, Wang Y, Karahan HE, Chen Z, Lei Y, Chen X, Zhai S, Liao X, Chen Y, J. Mater. Chem. A, 5, 20390, 2017
  49. Morales-Guio CG, Stern LA, Hu X, Chem. Soc. Rev., 43, 6555, 2014
  50. Mo J, Kang Z, Retterer ST, Cullen DA, Toops TJ, Green JB, Mench MM, Zhang FY, Sci. Adv., 2, 160069, 2016
  51. Kang Z, Yang G, Mo J, Li Y, Yu S, Cullen DA, Retterer ST, et al., Nano Energy, 47, 434, 2018
  52. Corrales-Sanchez T, Ampurdanes J, Urakawa A, Int. J. Hydrog. Energy, 39(35), 20837, 2014
  53. Kim H, Kim J, Kim SK, Ahn SH, Appl. Catal. B: Environ., 232, 93, 2018