Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1371-1378, 2020
Porous an hollow nanofibers for solid oxide fuel cell electrodes
Among the diverse approaches for improving the electrode performance of solid oxide fuel cells operating at intermediate temperatures, the use of nanofiber-based electrodes has provided large improvement owing to their large specific surface area, continuous conduction pathway, and highly porous structure. However, the low thermal stability at increased temperature often limits the process compatibility and sustainability during operation. In this study, we fabricated nanofiber-based electrodes with a high porosity and hollow shape using one-step electrospinning with a hydrogel polymer, which exhibited largely improved performance and excellent thermal stability. A porous-nanofiberbased cell exhibits a polarization resistance of 0.021Ωcm2 and maximum power density of 1.71 W/cm2 at 650 °C, which is an improvement of 34.3% and 14.7% compared to that of a solid-nanofiber-based cell, respectively. Comprehensive analyses of the microstructures and chemistry indicate that the performance increase is mainly attributable to the enhanced surface oxygen exchange reactions owing to the extended reaction sites with lower energy barriers by the high porosity and enriched oxygen vacancies in the nanofibers.
[References]
  1. Jeon Y, Myung JH, Hyun SH, Shul YG, Irvine JTS, J. Mater. Chem. A, 5, 3966, 2017
  2. Chen Y, Bu Y, Zhao B, Zhang Y, Ding D, Hu R, Wei T, Rainwater B, et al., Nano Energy, 26, 90, 2016
  3. Kim C, Park H, Jang I, Kim S, Kim K, Yoon H, Paik U, J. Power Sources, 378, 404, 2018
  4. Ahn M, Lee J, Lee W, J. Power Sources, 353, 176, 2017
  5. Jung JW, Lee CL, Yu S, Kim ID, J. Mater. Chem. A, 4, 703, 2016
  6. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH, Adv. Mater., 24(15), 2047, 2012
  7. Khalil A, Kim JJ, Tuller HL, Rutledge GC, Hashaikeh R, Sens. Actuators B-Chem., 227, 54, 2016
  8. Yang DJ, Kamienchick I, Youn DY, Rothschild A, Kim ID, Adv. Funct. Mater., 20(24), 4258, 2010
  9. Lee JG, Park JH, Shul YG, Nat. Commun., 5, 4045, 2014
  10. Ahn M, Han S, Lee J, Lee W, Ceram. Int., 46, 6006, 2020
  11. Ahn M, Cho J, Lee W, J. Power Sources, 434, 226749, 2019
  12. Koo JY, Lim Y, Kim YB, Byun D, Lee W, Int. J. Hydrog. Energy, 42(24), 15903, 2017
  13. Bellino MG, Sacanell JG, Lamas DG, Leyva AG, de Reca NEW, J. Am. Chem. Soc., 129(11), 3066, 2007
  14. Li J, Zhang N, He Z, Sun K, Wu Z, J. Alloy. Compd., 663, 664, 2016
  15. Liu P, Zhu Y, Ma J, Yang S, Gong J, Xu J, Colloids Surf. A: Physicochem. Eng. Asp., 436, 489, 2013
  16. Zhao E, Liu X, Liu L, Huo H, Xiong Y, Pro. Nat. Sci-Mater., 24, 24, 2014
  17. Murray EP, Sever MJ, Barnett SA, Solid State Ion., 148(1-2), 27, 2002
  18. Huang SG, Peng CQ, Zong Z, J. Power Sources, 176(1), 102, 2008
  19. Zhi M, Lee S, Miller N, Menzler NH, Wu N, Energy Environ. Sci., 5, 7066, 2012
  20. Zhao F, Peng RR, Xia CR, Mater. Res. Bull., 43(2), 370, 2008
  21. Lee J, Hwang S, Ahn M, Choi M, Han S, Byun D, Lee W, J. Mater. Chem. A, 7, 21120, 2019
  22. Chang CL, Hsu CS, Huang JB, Hsu PH, Hwang BH, J. Alloy. Compd., 620, 233, 2015
  23. Zhao E, Jia Z, Liu X, Gao K, Huo H, Xiong Y, Ceram. Int., 40, 14891, 2014
  24. Koyama M, Wen CJ, Masuyama T, Otomo J, Fukunaga H, Yamada K, Eguchi K, Takahashi H, J. Electrochem. Soc., 148(7), A795, 2001
  25. Fukunaga MKH, Takahashi N, Wen C, Yamada K, Solid State Ion., 1, 279, 2000
  26. Choi M, Lee J, Lee W, J. Mater. Chem. A, 6, 11811, 2018
  27. Koo JY, Hwang S, Ahn M, Choi M, Byun D, Lee W, Lu K, J. Am. Ceram. Soc., 9, 3146, 2016
  28. Fan L, Wang Y, Jia Z, Xiong Y, Brito ME, Ceram. Int., 41, 6583, 2015
  29. Du YK, Yang P, Mou ZG, Hua NP, Jiang L, J. Appl. Polym., 99, 23, 2006
  30. Bigi A, Ripamonti A, Cojazzi G, Pizzuto G, Roveri N, Koch M, Int. J. Biol. Macromol., 13, 110, 1991
  31. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y, Energy Environ. Sci., 8/, 1404, 2015
  32. Lv H, Wu YJ, Huang B, Zhao BY, Hu KA, Solid State Ion., 177(9-10), 901, 2006
  33. Lee W, Jung HJ, Lee MH, Kim YB, Park JS, Sinclair R, Prinz FB, Adv. Funct. Mater., 22(5), 965, 2012
  34. Bae J, Lim Y, Park JS, Lee D, Hong S, An J, Kim YB, J. Electrochem. Soc., 163(8), F919, 2016
  35. Kim YB, Park JS, Gur TM, Prinz FB, J. Power Sources, 196(24), 10550, 2011
  36. Park JS, An J, Lee MH, Prinz FB, Lee W, J. Power Sources, 295, 75, 2015
  37. Berenov A, Atkinson A, Kilner J, Ananyev M, Eremin V, Porotnikova N, Farlenkov A, Kurumchin E, Bouwmeester HJM, Bucher E, Sitte W, Solid State Ion., 268, 102, 2014
  38. Xu XM, Chen YB, Zhou W, Zhu ZH, Su C, Liu ML, Shao ZP, Adv. Mater., 28(30), 6442, 2016
  39. Liu R, Liang F, Zhou W, Yang Y, Zhu Z, Nano Energy, 12, 115, 2015
  40. Jung JI, Jeong HY, Kim MG, Nam G, Park J, Cho J, Adv. Mater., 27(2), 266, 2015
  41. Zhu YL, Zhou W, Chen YB, Yu J, Liu ML, Shao ZP, Adv. Mater., 27(44), 7150, 2015
  42. Lee SA, Oh S, Hwang JY, Choi M, Youn C, Kim JW, et al., Energy Environ. Sci., 10, 924, 2017
  43. Xu W, Lyu F, Bai Y, Gao A, Feng J, Cai Z, Yin Y, Nano Energy, 43, 110, 2018
  44. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H, Nat. Mater., 10(1), 45, 2011
  45. Choi M, Ibrahim IAM, Kim K, Koo JY, Kim SJ, Son JW, Han JW, Lee W, ACS Appl. Mater. Interfaces, 12, 21494, 2020
  46. Kim SJ, Choi M, Lee J, Lee W, J. European Ceram. Soc., 40, 3089, 2020
  47. Adler SB, Chem. Rev., 10, 4791, 2004
  48. Baumann FS, Fleig J, Habermeier HU, Maier J, Solid State Ion., 177(11-12), 1071, 2006
  49. Chen Y, Bu Y, Zhang Y, Yan R, Ding D, Zhao B, Yoo S, Dang D, Hu R, Yang C, Liu M, Adv. Eng. Mater., 7, 160890, 2017
  50. Choi M, Hwang S, Kim SJ, Lee J, Byun D, Lee W, ACS Appl. Energy Mater., 2, 4059, 2019
  51. Baek SW, Bae J, Yoo YS, J. Power Sources, 193(2), 431, 2009
  52. Lee JG, Park MG, Park JH, Shul YG, Ceram. Int., 40, 8053, 2014
  53. Muranaka M, Sasaki K, Suzuki A, Terai T, J. Electrochem. Soc., 156(6), B743, 2009
  54. Yang YL, Jacobson AJ, Chen CL, Luo GP, Ross KD, Chu CW, Appl. Phys. Lett., 79, 776, 2001