Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1365-1370, 2020
Confinement of Ru nanoparticles inside the carbon nanotube: Selectivity controls on methanol decomposition
Carbon nanotubes (CNT) have been widely used as catalyst supports, and the confinement of metal nanoparticles inside the CNT cavity have received much attention. In this study, graphitic carbon nitride were used to introduce nitrogen to CNT and form ruthenium nanoparticles inside the CNT channel. The XPS evidenced that the ruthenium nanoparticles in the CNT cavity are present in more reduced state, and the nitrogen species are in a pyridinic and a pyrrolic form. The prepared catalysts exhibited excellent hydrogen and carbon monoxide selectivity. The hydrogen-to-carbon monoxide ratio was close to the stoichiometric ratio of methanol decomposition. In contrast, the ruthenium nanoparticles outside the CNT showed lower carbon monoxide selectivity at high methanol conversion. The alteration of electrical properties of ruthenium nanoparticles by the CNT channel and N-doping might hamper side reactions, such as water gas shift, methanation, dimethyl ether formation upon methanol decomposition.
[References]
  1. Zhang D, Wei G, Wang Y, Wang J, Ning P, Zhang Q, Wang M, Zhang T, Long K, Korean J. Chem. Eng., 35(10), 1979, 2018
  2. Pan XL, Fan ZL, Chen W, Ding YJ, Luo HY, Bao XH, Nat. Mater., 6(7), 507, 2007
  3. Castillejos E, Debouttiere PJ, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P, Angew. Chem.-Int. Edit., 48(14), 2529, 2009
  4. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21, 2003
  5. Liu H, Zhang L, Wang N, Su DS, Angew. Chem.-Int. Edit., 53(46), 12634, 2014
  6. Tessonnier JP, Pesant L, Ehret G, Ledoux MJ, Pham-Huu C, Appl. Catal. A: Gen., 288(1-2), 203, 2005
  7. Wang D, Liu J, Xi JB, Jiang JZ, Bai ZW, Appl. Surf. Sci., 489, 477, 2019
  8. Palacio I, de la Fuente OR, Surf. Sci., 606(15-16), 1152, 2012
  9. Sieben JM, Duarte MME, Int. J. Hydrog. Energy, 37(13), 9941, 2012
  10. Shiozaki R, Hayakawa T, Liu YY, Ishii T, Kumagai M, Hamakawa S, Suzuki K, Itoh T, Shishido T, Takehira K, Catal. Lett., 58(2-3), 131, 1999
  11. Hokenek S, Kuhn JN, ACS Catal., 2(6), 1013, 2012
  12. Paneva D, Tsoncheva T, Manova E, Mitov I, Ruskov T, Appl. Catal. A: Gen., 267(1-2), 67, 2004
  13. Tsoncheva T, Genova I, Stoyanova M, Pohl MM, Nickolov R, Dimitrov M, Sarcadi-Priboczki E, Mihaylov M, Kovacheva D, Hadjiivanov K, Appl. Catal. B: Environ., 147, 684, 2014
  14. Fan MQ, Xu Y, Sakurai J, Demura M, Hirano T, Teraoka Y, Yoshigoe A, Catal. Lett., 144(5), 843, 2014
  15. Hong S, Rahman TS, J. Am. Chem. Soc., 135(20), 7629, 2013
  16. Wang H, Lu JL, Marshall CL, Elam JW, Miller JT, Liu HB, Enterkin JA, Kennedy RM, Stair PC, Poeppelmeier KR, Marks LD, Catal. Today, 237, 71, 2014
  17. Marban G, Lopez A, Lopez I, Valdes-Solis T, Appl. Catal. B: Environ., 99(1-2), 257, 2010
  18. Lee JH, Park MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Yoon CW, Kim JY, Nanoscale, 7(23), 10334, 2015
  19. Hien TN, Kim YH, Jeon M, Lee HJ, Ridwan M, Tamarany R, Yoon WC, Materials, 8(6), 3442, 2015
  20. Lee JH, Ryu J, Kim JY, Nam SW, Han JH, Lim TH, Gautam S, Chae KH, Yoon CW, J. Mater. Chem. A, 2(25), 9490, 2014
  21. Kim YK, Park H, Energy Environ. Sci., 4(3), 685, 2011
  22. Park Y, Lee B, Kim C, Oh Y, Nam S, Park B, J. Mater. Res., 24(9), 2762, 2009
  23. Qiao Y, Guo S, Zhu K, Liu P, Li X, Jiang K, Sun CJ, Chen M, Zhou H, Energy Environ. Sci., 11(2), 299, 2018
  24. Lee WJ, Jeong SM, Lee H, Kim BJJ, An KH, Park YK, Jung SC, Korean J. Chem. Eng., 34(11), 2993, 2017
  25. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, Zaharinie T, Badarudin A, J. Colloid Interface Sci., 504, 115, 2017
  26. Chen MH, Ke CY, Chiang CL, J. Compos. Sci., 2(2), 18, 2018
  27. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH, ACS Nano, 5(6), 4350, 2011
  28. Lee JH, Park MJ, Jung J, Ryu J, Cho E, Nam SW, Kim JY, Yoon CW, Inorg. Chim. Acta., 422, 3, 2014
  29. Deng J, Ren P, Deng D, Yu L, Yang F, Bao X, Energy Environ. Sci., 7(6), 1919, 2014
  30. Sexton BA, Surf. Sci., 102(1), 271, 1981
  31. Moura AS, Fajin JLC, Pinto ASS, Mandado M, Cordeiro MNDS, J. Phys. Chem. C, 119(49), 27382, 2015
  32. Wei GF, Shang C, Liu ZP, Phys. Chem. Chem. Phys., 117(3), 2078, 2015
  33. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P, Nano Lett., 3(1), 21, 2003