Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1360-1364, 2020
Surface engineering of Pd-based nanoparticles by gas treatment for oxygen reduction reaction
In many catalyst systems, including fuel cell applications, control of the catalyst surface composition is important for improving activity since catalytic reactions occur only at the surface. However, it is very difficult to modify the surface composition without changing the morphology of metal nanoparticles. Herein, carbon-supported Pd3Au1 nanoparticles with uniform size and distribution are fabricated by tert-butylamine reduction method. Pd or Au surface segregation is induced by simply heating as-prepared Pd3Au1 nanoparticles under CO or Ar atmosphere, respectively. Especially, CO-induced Pd surface segregation allows the alloy nanoparticles to have a Pd-rich surface, which is attributed to the strong CO binding energy of Pd. To demonstrate the change in surface composition of Pd3Au1 alloy catalyst with the annealing gas species, the oxygen reduction reaction performance is investigated and consequently, Pd3Au1 catalyst with the highest number of surface Pd atoms indicates excellent catalytic activity. Therefore, the present work provides insights into the development of metal-based alloys with optimum structures and surface compositions for various catalytic systems.
[References]
  1. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN, Fuel Cells, 1, 105, 2001
  2. Lee SY, Jung N, Shin DY, Park HY, Ahn D, Kim HJ, Jang JH, Lim DH, Yoo SJ, Appl. Catal. B: Environ., 206, 666, 2017
  3. Sharma M, Jung N, Yoo SJ, Chem. Mater., 30, 2, 2018
  4. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9, 2005
  5. Sung H, Sharma M, Jang J, Lee SY, Choi MG, Lee K, Jung N, Nanoscale, 11, 5038, 2019
  6. Sharma M, Jang JH, Shin DY, Kwon JA, Lim DH, Choi D, et al., Energy Environ. Sci., 12, 2200, 2019
  7. Erikson H, Sarapuu A, Tammeveski K, Jose SG, Feliu JM, Electrochem. Commun., 13, 734, 2011
  8. Arjona N, Guerra-Balcazar M, Ortiz-Frade L, Osorio-Monreal G, Alvarez-Contreras L, Ledesma-Garciab J, Arriaga LG, J. Mater. Chem. A, 1, 15524, 2013
  9. Zhang L, Chang Q, Chen H, Shao M, Nano Energy, 29, 198, 2016
  10. Lee SY, Jung N, Cho J, Park HY, Ryu J, Jang I, Kim HJ, et al., ACS Catal., 4, 2402, 2014
  11. Han S, Chae GS, Lee JS, Korean J. Chem. Eng., 33(6), 1799, 2016
  12. Liu Z, Fu G, Li J, Liu Z, Xu L, Sun D, Tang Y, Nano Res., 11, 4686, 2018
  13. Ramos-Sanchez G, Yee-Madeira H, Solorza-Feria O, Int. J. Hydrog. Energy, 33(13), 3596, 2008
  14. Ye HQ, Li YM, Chen JH, Sheng JL, Fu XZ, Sun R, Wong CP, J. Mater. Sci., 53(23), 15871, 2018
  15. Gao F, Goodman DW, Chem. Soc. Rev., 41, 8009, 2012
  16. Liu P, Nørskov JK, Phys. Chem. Chem. Phys., 3, 3814, 2001
  17. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, et al., Nat. Chem., 2, 454, 2010
  18. Singh AK, Xu Q, ChemCatChem., 5, 652, 2013
  19. Kumar VS, Kummari S, Goud KY, Satyanarayana M, Gobi KV, Int. J. Hydrog. Energy, 45(1), 1018, 2020
  20. Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T, Jiang JH, Hirata A, Chen MW, ACS Catal., 3, 1220, 2013
  21. Erikson H, Sarapuu A, Kozlova J, Matisen L, Sammelselg V, Tammeveski K, Electrocatalysis, 6, 77, 2015
  22. Kumar VS, Kummari S, Goud KY, Satyanarayana M, Gobi KV, Int. J. Hydrog. Energy, 45(1), 1018, 2020
  23. Paalanen P, Weckhuysen BM, Sankar M, Catal. Sci. Technol., 3, 2869, 2013
  24. Yin Z, Chi M, Zhu Q, Ma D, Sun J, Bao X, J. Mater. Chem. A, 1, 9157, 2013
  25. Jiao W, Chen C, You W, Chen G, Xue S, Zhang J, Liu J, Feng Y, Wang P, Wang Y, Wen H, Che R, Appl. Catal. B: Environ., 262, 118298, 2020
  26. Kumikov VK, Khokonov KB, J. Appl. Phys., 54, 1346, 1983
  27. Mezey LZ, Giber J, Appl. Phys. A-Mater. Sci. Process., 35, 87, 1984
  28. Zhang J, Jin H, Sullivan MB, Lim FCH, Wu P, Phys. Chem. Chem. Phys., 11, 1441, 2009
  29. Greeley J, Mavrikakis M, Catal. Today, 111(1-2), 52, 2006
  30. Patterson A, Phys. Rev., 56, 978, 1939
  31. Nascente PAP, De castro SGC, Landers R, Kleiman GG, Phys. Rev. B, 43, 4659, 1991
  32. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K, J. Phys. Chem. B, 110(25), 12480, 2006