Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1346-1351, 2020
Enhanced Cr tolerance of perovskite oxide via Gd0.1Ce0.9O2 surface modifications
Cr poisoning of the SUS interconnect and the solid oxide fuel cell electrode is one of the crucial hurdles to achieving system sustainability. Among various approaches to solving this issue, the suppression of cation segregation, especially Sr, and preventing the electrode surface from direct exposure to Cr-gas have been considered the most important factors. Herein, the effect of surface coating on mitigating Sr segregation as well as the use of strategies for protecting the electrode surface from exposure to Cr gas are discussed. Using Sm0.5Sr0.5CoO3(SSC) as a model film electrode and Gd0.1Ce0.9O2 (GDC) as the coating layer via a pulsed laser deposition (PLD) method, the Cr tolerance of the perovskite oxide electrode was enhanced. Electrochemical measurement at 650 °C for 200 h showed ~2.5 times higher stability of the GDC-coated SSC electrode than the bare SSC electrode. Using Auger electron spectroscopy (AES), the chemical states of the GDC-coated SSC electrode were characterized, revealing significantly reduced Sr and Cr intensity on the surface of the coated electrode when compared to the bare SSC electrode.
[References]
  1. Wachsman ED, Lee KT, Science, 334(6058), 935, 2011
  2. Yang ZG, Weil KS, Paxton DM, Stevenson JW, J. Electrochem. Soc., 150(9), A1188, 2003
  3. Zanchi E, Talic B, Sabato A, Molin S, Boccaccini A, Smeacetto F, J. European Ceram. Soc., 39, 3768, 2019
  4. Hou PY, Huang K, Bakker WT, ECS Proceedings Volumes, 1999, 737, 1999
  5. Ni N, Cooper SJ, Williams R, Kemen N, McComb DW, Skinner SJ, ACS Appl. Mater. Interfaces, 8, 17360, 2016
  6. Chen Y, Yoo S, Li X, Ding D, Pei K, Chen D, Ding Y, Zhao B, Murphy R, Deglee B, Nano Energy, 47, 474, 2018
  7. Li J, Li J, Yan D, Pu J, Chi B, Jian L, Electrochim. Acta, 270, 294, 2018
  8. Wei B, Schroeder M, Martin M, ACS Appl. Mater. Interfaces, 10, 8621, 2018
  9. Lee W, Han JW, Chen Y, Cai ZH, Yildiz B, J. Am. Chem. Soc., 135(21), 7909, 2013
  10. Koo JY, Kwon H, Ahn M, Choi M, Son JW, Han JW, Lee W, ACS Appl. Mater. Interfaces, 10, 8057, 2018
  11. Horita T, Xiong YP, Kishimoto H, Yamaji K, Brito ME, Yokokawa H, J. Electrochem. Soc., 157(5), B614, 2010
  12. Geng SJ, Pan Y, Chen G, Wang FH, Int. J. Hydrog. Energy, 44(18), 9400, 2019
  13. Chen Y, Jung W, Cai Z, Kim JJ, Tuller HL, Yildiz B, Energy Environ. Sci., 5, 7979, 2012
  14. Jung W, Tuller HL, Energy Environ. Sci., 5, 5370, 2012
  15. Li Y, Zhang W, Zheng Y, Chen J, Yu B, Chen Y, Liu M, Chem. Soc. Rev., 46, 6345, 2017
  16. Kim D, Park JW, Yun BH, Park JH, Lee KT, ACS Appl. Mater. Interfaces, 11, 31786, 2019
  17. Zhao MS, Geng SJ, Chen G, Wang FH, J. Power Sources, 414, 530, 2019
  18. Demeneva N, Kononenko O, Matveev D, Kharton V, Bredikhin S, Mater. Lett., 240, 201, 2019
  19. Chen H, Guo Z, Zhang LA, Li Y, Li F, Zhang Y, Chen Y, Wang X, Yu B, Shi JM, ACS Appl. Mater. Interfaces, 10, 39785, 2018
  20. Wen Y, Yang T, Lee D, Lee HN, Crumlin EJ, Huang K, J. Mater. Chem. A, 6, 24378, 2018
  21. Tsvetkov N, Lu QY, Sun LX, Crumlin EJ, Yildiz B, Nat. Mater., 15(9), 1010, 2016
  22. Kim D, Bliem R, Hess F, Gallet JJ, Yildiz B, J. Am. Chem. Soc., 7, 3548, 2020
  23. Hess F, Yildiz B, Phys. Rev. Mater., 4, 015801, 2020
  24. Chen K, Li N, Ai N, Li M, Cheng Y, Rickard WD, Li J, Jiang SP, J. Mater. Chem. A, 4, 17678, 2016
  25. Lynch ME, Yang L, Qin W, Choi JJ, Liu M, Blinn K, Liu M, Energy Environ. Sci., 4, 2249, 2011
  26. Cai Z, Kubicek M, Fleig JR, Yildiz B, Chem. Mater., 24, 1116, 2012
  27. Jacob K, Abraham K, J. Phase Equilib., 21, 46, 2000
  28. Druce J, Tellez H, Burriel M, Sharp M, Fawcett L, Cook S, et al., Energy Environ. Sci., 7, 3593, 2014
  29. Koo B, Kwon H, Kim Y, Seo HG, Han JW, Jung W, Energy Environ. Sci., 11, 71, 2018
  30. Choi M, Ibrahim IAM, Kim K, Koo JY, Kim SJ, Son JW, Han JW, Lee W, ACS Appl. Mater. Interfaces, 12, 21494, 2020