Issue
Korean Journal of Chemical Engineering,
Vol.37, No.8, 1295-1305, 2020
Computational approaches to the exsolution phenomenon in perovskite oxides with a view to design highly durable and active anodes for solid oxide fuel cells
Computational approaches have been used effectively in material design for solid oxide fuel cells (SOFCs). As a way to improve the performance and stability of anode materials in SOFCs, the exsolution phenomenon has been extensively taken advantage of. In the exsolution process, highly active and stable nanoparticles (NPs) are formed uniformly over the surface of the host oxide due to the anchoring effects of exsolved NPs in the host’s structure. In this review, we particularly focus on how computational approaches such as density functional theory calculation, phase field modeling, and analytic methods can be used to understand the exsolution phenomenon; this knowledge can then be exploited to design enhanced anode materials for SOFCs. We first review the nature of exsolution and then look into catalytic applications of exsolved NPs. From this point, we investigate how to engineer exsolved nanoparticles to maximize their catalytic activity with a view that any enhanced performance will aid future applications.
[References]
  1. Kim JH, Park YM, Kim H, Korean J. Chem. Eng., 29(11), 1541, 2012
  2. Liu M, Choi Y, Yang L, Blinn K, Qin W, Liu P, Liu M, Nano Energy, 1, 448, 2012
  3. Singh D, Hernandez-Pacheco E, Hutton PN, Patel N, Mann MD, J. Power Sources, 142(1-2), 194, 2005
  4. Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK, Renew. Sust. Energ. Rev., 82, 353, 2018
  5. Lee JY, Yoo M, Cha K, Lim TW, Hur T, Int. J. Hydrog. Energy, 34(10), 4243, 2009
  6. Haberman B, Baca CM, Ohrn T, ECS Transactions, 35, 451, 2011
  7. Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J, Chem. Rev., 111(5), 3577, 2011
  8. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z, Adv. Eng. Mater., 5, 150053, 2015
  9. Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S, Adv. Eng. Mater., 1, 314, 2011
  10. Tietz F, Raj IA, Zahid M, Stover D, Solid State Ion., 177(19-25), 1753, 2006
  11. Petric A, Huang P, Tietz F, Solid State Ion., 135(1-4), 719, 2000
  12. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A, Solid State Ion., 138(1-2), 79, 2000
  13. Park YM, Kim H, Korean J. Chem. Eng., 30(11), 2017, 2013
  14. Kaur P, Singh K, Ceram. Int., 46, 5521, 2020
  15. Piao JH, Sun KN, Zhang NQ, Chen XB, Xu S, Zhou DR, J. Power Sources, 172(2), 633, 2007
  16. Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29(3), 349, 2012
  17. Yu T, Mao X, Ma G, J. Alloy. Compd., 608, 30, 2014
  18. Koo B, Kim K, Kim JK, Kwon H, Han JW, Jung W, Joule, 2, 1476, 2018
  19. Khan MS, Lee SB, Song RH, Lee JW, Lim TH, Park SJ, Ceram. Int., 42, 35, 2016
  20. Caillot T, Gauthier G, Delichere P, Cayron C, Aires FJCS, J. Catal., 290, 158, 2012
  21. Ding HP, Tao ZT, Liu S, Yang YT, J. Power Sources, 327, 573, 2016
  22. Shen J, Chen YB, Yang GM, Zhou W, Tade MO, Shao ZP, J. Power Sources, 306, 92, 2016
  23. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304, 1995
  24. Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F, Solid State Ion., 135(1-4), 433, 2000
  25. Neagu D, Oh TS, Miller DN, Menard H, Bukhari SM, Gamble R, Gorte RJ, Vohs JM, Irvine JTS, Nat. Commun., 6, 8120, 2015
  26. Kim S, Kim C, Lee JH, Shin J, Lim TH, Kim G, Electrochim. Acta, 225, 399, 2017
  27. Kim KJ, Rath MK, Kwak HH, Kim HJ, Han JW, Hong ST, Lee KT, ACS Catal., 9, 1172, 2019
  28. Jacobs R, Mayeshiba T, Booske J, Morgan D, Adv. Eng. Mater., 8, 170270, 2018
  29. Hwang B, Kwon H, Ko J, Kim BK, Han JW, Appl. Surf. Sci., 429, 87, 2018
  30. Sapountzi FM, Zhao C, Boreave A, Retailleau-Mevel L, Niakolas D, Neofytidis C, Vernoux P, Catal. Sci. Technol., 8, 1578, 2018
  31. Cho A, Ko J, Kim BK, Han JW, ACS Catal., 9, 967, 2019
  32. Kwon H, Lee W, Han JW, RSC Adv., 6, 69782, 2016
  33. Koo B, Kwon H, Kim Y, Seo HG, Han JW, Jung W, Energy Environ. Sci., 11, 71, 2018
  34. Irvine JTS, Neagu D, Verbraeken MC, Chatzichristodoulou C, Graves C, Mogensen MB, Nat. Energy, 1, 15014, 2016
  35. Fan L, Zhu B, Su PC, He C, Nano Energy, 45, 148, 2018
  36. Li Y, Zhang W, Zheng Y, Chen J, Yu B, Chen Y, Liu M, Chem. Soc. Rev., 46, 6345, 2017
  37. Kwak NW, Jeong SJ, Seo HG, Lee S, Kim Y, Kim JK, Byeon P, Chung SY, Jung W, Nat. Commun., 9, 4829, 2018
  38. Madsen BD, Kobsiriphat W, Wang Y, Marks LD, Barnett S, ECS Trans., 35, 1339, 2011
  39. Neagu D, Kyriakou V, Roiban IL, Aouine M, Tang C, et al., ACS Nano, 13, 12996, 2019
  40. Gohier A, Ewels CP, Minea TM, Djouadi MA, Carbon, 46, 1331, 2008
  41. Zhu Y, Zhou W, Ran R, Chen Y, Shao Z, Liu M, Nano Lett., 16, 512, 2016
  42. Sun YF, Zhang YQ, Chen J, Li JH, Zhu YT, Zeng YM, Amirkhiz BS, Li J, Hua B, Luo JL, Nano Lett., 16, 5303, 2016
  43. Sun YF, Li JH, Wang MN, Hua B, Li J, Luo JL, J. Mater. Chem. A, 3, 14625, 2015
  44. Li HX, Sun GH, Xie K, Qi WT, Qin QQ, Wei HS, Chen SG, Wang Y, Zhang Y, Wu YC, Int. J. Hydrog. Energy, 39(36), 20888, 2014
  45. Bierschenk DM, Potter-Nelson E, Hoel C, Liao YG, Marks L, Poeppelmeier KR, Barnett SA, J. Power Sources, 196(6), 3089, 2011
  46. Wei H, Xie K, Zhang J, Zhang Y, Wang Y, Qin Y, Cui J, Yan J, Wu Y, Sci. Rep., 4, 5156, 2014
  47. Du Z, Zhao H, Yi S, Xia Q, Gong Y, Zhang Y, Cheng X, Li Y, Gu L, Swierczek K, ACS Nano, 10, 8660, 2016
  48. Hua B, Yan N, Li M, Sun YF, Zhang YQ, Li J, Etsell T, Sarkar P, Luo JL, Adv. Mater., 28(40), 8922, 2016
  49. Lai KY, Manthiram A, Chem. Mater., 30, 2838, 2018
  50. Neagu D, Tsekouras G, Miller DN, Menard H, Irvine JTS, Nat. Chem., 5, 916, 2013
  51. Tsekouras G, Neagu D, Irvine JT, Energy Environ. Sci., 6, 256, 2013
  52. Sun Y, Li J, Zeng Y, Amirkhiz BS, Wang M, Behnamian Y, Luo J, J. Mater. Chem. A, 3, 11048, 2015
  53. Jiang G, Yan F, Wan S, Zhang Y, Yan M, Phys. Chem. Chem. Phys., 21, 10902, 2019
  54. Kwon O, Sengodan S, Kim K, Kim G, Jeong HY, Shin J, Ju YW, Han JW, Kim G, Nat. Commun., 8, 15967, 2017
  55. Gao Y, Chen D, Saccoccio M, Lu Z, Ciucci F, Nano Energy, 27, 499, 2016
  56. Lv H, Lin L, Zhang X, Song Y, Matsumoto H, Zeng C, Ta N, Liu W, Gao D, Wang G, Bao X, Adv. Mater., 32, 190619, 2020
  57. Kwon O, Kim K, Joo S, Jeong HY, Shin J, Han JW, Sengodan S, Kim G, J. Mater. Chem. A, 6, 15947, 2018
  58. Ko J, Kwon H, Kang H, Kim BK, Han JW, Phys. Chem. Chem. Phys., 17, 3123, 2015
  59. Kim K, Baek S, Kim JJ, Han JW, Appl. Surf. Sci., 510, 145349, 2020
  60. Joo S, Kwon O, Kim K, Kim S, Kim H, Shin J, Jeong HY, Sengodan S, Han JW, Kim G, Nat. Commun., 10, 697, 2019
  61. Han H, Park J, Nam SY, Kim KJ, Choi GM, Parkin SSP, Jang HM, Irvine JTS, Nat. Commun., 10, 1471, 2019
  62. Lv H, Lin L, Zhang X, Gao D, Song Y, Zhou Y, Liu Q, Wang G, Bao X, J. Mater. Chem. A, 7, 11967, 2019
  63. Jo YR, Koo B, Seo MJ, Kim JK, Lee S, Kim K, Han JW, Jung W, Kim BJ, J. Am. Chem. Soc., 141(16), 6690, 2019
  64. Oh TS, Rahani EK, Neagu D, Irvine JTS, Shenoy VB, Gorte RJ, Vohs JM, J. Phys. Chem. Lett., 6, 5106, 2015
  65. Ess D, Gagliardi L, Hammes-Schiffer S, Chem. Rev., 119(11), 6507, 2019