Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 716-723, 2020
Size control of azilsartan by drowning-out crystallization with phase transformation
To complement the insufficient bioavailability of azilsartan, particle size reduction of azilsartan by drowning- out was attempted. By injecting an azilsartan/ethanol solution into the antisolvent of water, two phases of azilsartan, amorphous and crystalline type A, were found along with phase transformation. The crystal size was strongly affected by the operating parameters such as the volume ratio of antisolvent/azilsartan solution, crystallization temperature, and additives. The crystal size decreased upon increasing the antisolvent/azilsartan solution volume ratio and lowering the temperature. Furthermore, addition of carboxylic acids to the antisolvent of water produced nano-meter sized crystals. In particular, 200 nm particles were obtained with acetic acid. An enhancement in the dissolution rate was found for size-reduced azilsartan crystals, especially when the crystals… sizes were in the nanometer range.
[References]
  1. Kurtz TW, Kajiya T, Vasc. Health Risk Manage, 18, 133, 2012
  2. Blagden N, de Matas M, Gavan PT, York P, Adv. Drug Deliv. Rev., 59(7), 617, 2007
  3. Noyes AA, Whitney WR, J. Am. Chem. Soc., 19(12), 930, 1897
  4. Lu T, Sun Y, Ding D, Zhang Q, Fan R, He Z, Wang J, AAPS J., 18(2), 473, 2017
  5. Tinke AP, Vanhoutte K, De Maesschalck R, Verheyen S, De Winter H, J. Pharm. Biomed. Anal., 39(5), 900, 2005
  6. Verma S, Gokhale R, Burgess DJ, Int. J. Pharm., 380(1-2), 216, 2009
  7. Rasenack N, Muller BW, Pharm. Dev. Technol., 9(1), 1, 2004
  8. Sharma C, Desai MA, Patel SR, Cryst. Res. Technol., 53(3), 180000, 2018
  9. Jain S, Reddy VA, Arora S, Patel K, Drug Deliv. Transl. Res., 6(5), 498, 2016
  10. Ma Q, Sun H, Che E, Zheng X, Jiang T, Sun C, Wang S, Int. J. Pharm., 441(1-2), 75, 2013
  11. Zhang Z, Le Y, Wang J, Zhao H, Chen J, Particuology, 10(4), 462, 2012
  12. Hancock BC, Zografi G, Pharm. Res., 11, 471, 1994
  13. Chan HK, Chew NY, Adv. Drug Deliv. Rev., 55, 793, 2003
  14. Kim WS, Koo KK, Cryst. Growth Des., 19, 1797, 2019
  15. Reddy AVR, Garaga S, Takshinamoorthy C, Gupta G, Naidu A, Indo Am. J. Pharm. Res., 5(6), 2208, 2015
  16. Tomlinson E, Int. J. Pharm., 13, 115, 1983
  17. Tomlinson E, Davis SS, J. Colloid Interface Sci., 76, 563, 1980
  18. Krug RR, Hunter WG, Grieger RA, J. Phys. Chem., 80, 2341, 1976
  19. Bustamante P, Romero S, Pena A, Escalera B, Reillo A, J. Pharm. Sci., 87, 1590, 1998
  20. Rouw AC, Somsen G, J. Solution Chem., 10, 533, 1981
  21. Heuvelsland WJM, de Visser C, Somsen G, J. Phys. Chem., 82, 29, 1978
  22. Martinez F, Pena MA, Bustamante P, Fluid Phase Equilib., 308(1-2), 98, 2011
  23. Tung HH, Paul EL, Midler M, McCauley JA, Crystallization of organic compounds: an industrial perspective, Wiley, NewYork (2009).
  24. Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U, Langmuir, 22(3), 906, 2006
  25. Erdemir D, Lee AY, Myerson AS, Accounts Chem. Res., 42(5), 621, 2009
  26. Maher A, Croker DM, Rasmuson AC, Hodnett BK, Cryst. Growth Des., 12(12), 6151, 2012
  27. Kim JW, Kim JK, Kim HS, Koo KK, Cryst. Growth Des., 9(6), 2700, 2009
  28. Kakran M, Sahoo NG, Tan IL, Li L, J. Nanopart. Res., 14(3), 757, 2012
  29. Du W, Yin QX, Hao HX, Bao Y, Zhang X, Huang JT, Li X, Xie C, Gong JB, Ind. Eng. Chem. Res., 53(14), 5652, 2014
  30. Gu CH, Young Y, J. Pharm. Sci., 90(11), 1878, 2001
  31. Rodriguez-hornedo N, Murphy D, J. Pharm. Sci., 88(7), 651, 1999
  32. Zhang XR, Zhang L, J. Mol. Struct., 1137, 320, 2017