Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 688-697, 2020
Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor
A simultaneous NOx/SO2 removal system using bio-char and CaO combined with calcium looping process for CO2 capture was proposed. The simultaneous NO/SO2 removal performance of coconut shell char/CaO experienced CO2 capture cycles was investigated in a fluidized bed reactor. The effects of reaction temperature, mass ratio of CaO to coconut shell coke, CaO particle size and number of CO2 capture cycles from calcium looping process were discussed. The NO removal efficiency of char is improved under the catalysis of CaO. The reaction temperature plays an important role in the simultaneous NO/SO2 removal. Coconut shell char/CaO achieve the highest NO and SO2 removal efficiencies at 825 °C, which are 98% and 100%, respectively. The mass ratio of CaO to coconut shell char of 60 : 100 is a good choice for the simultaneous NO/SO2 removal. Smaller CaO particle size contributes to higher NO and SO2 removal efficiencies of coconut shell char/CaO. The NO and SO2 removal efficiencies of coconut shell char and cycled CaO from calcium looping declined slightly with the number of CO2 capture cycles. In addition, the Ca-based materials balance in process of simultaneous NOx/SO2 removal combined with calcium looping is given. The novel simultaneous NO/SO2 removal method using bio-char and cycled CaO from calcium looping process appears promising.
[References]
  1. Manianglung C, Pacia RM, Ko YS, Korean J. Chem. Eng., 36(8), 1267, 2019
  2. Kang D, Lee JW, Appl. Catal. B: Environ., 186, 41, 2016
  3. Lim HS, Kang D, Lee JW, Appl. Catal. B: Environ., 202, 175, 2017
  4. Khan AA, Halder G, Saha AK, Korean J. Chem. Eng., 36(7), 1090, 2019
  5. Ma X, Li Y, Chi X, Zhang W, Wang Z, Korean J. Chem. Eng., 34(2), 580, 2017
  6. Yoo KY, Park JS, Park MJ, Korean J. Chem. Eng., 33(4), 1153, 2016
  7. Fan LS, Zeng L, Wang W, Luo S, Energy Environ. Sci., 5, 7254, 2012
  8. Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K, Chem. Eng. Res. Des., 77, 62, 2019
  9. Valverde JM, Chem. Eng. J., 228, 1195, 2013
  10. Li YJ, Ma XT, Wang WJ, Chi CY, Shi JW, Duan LB, Chem. Eng. J., 316, 438, 2017
  11. Cormos CC, Energy, 78, 665, 2014
  12. Chen H, Khalili N, Li J, Chem. Eng. J., 345, 321, 2018
  13. Li X, Li W, Wang L, Chang X, Coal Chem. Indus., 46, 17, 2018
  14. Li Y, Buchi S, Grace JR, Lim CJ, Energy Fuels, 19(5), 1927, 2005
  15. Sun P, Grace JR, Lim CJ, Anthony EJ, Energy Fuels, 21(1), 163, 2007
  16. Ryu HJ, Grace JR, Lim CJ, Energy Fuels, 20(4), 1621, 2006
  17. Luo C, Zheng Y, Guo J, Feng B, Fuel, 127, 124, 2014
  18. Gu Q, Hu X, Clean Coal Technol., 21, 77, 2015
  19. He FQ, Deng XH, Chen M, Fuel, 199, 523, 2017
  20. Zhang W, Lu C, Chen D, Deng W, Song Q, Feng Y, Gong W, Song J, Clean Coal Technol., 25, 45, 2019
  21. Xue YD, Zhang Y, Zhang Y, Zheng SL, Zhang Y, Jin W, Chem. Eng. J., 325, 544, 2017
  22. Wang B, Liu SY, Li FY, Fan ZP, Korean J. Chem. Eng., 34(3), 717, 2017
  23. Sun S, Zhang J, Hu X, Qiu P, Qian J, Qin Y, Korean J. Chem. Eng., 26(2), 554, 2009
  24. Zhao ZB, Qiu JS, Li W, Li BQ, Fuel, 82(8), 949, 2003
  25. Guo F, Hecker WC, Symp. Combust., 27, 3085, 1998
  26. Zhao ZB, Li W, Li BQ, Fuel, 81(11-12), 1559, 2002
  27. Wang S, Lu J, Hu Z, Huang L, Huazhong Univ. Sci. Tech., 34, 21, 2006
  28. Wang CA, Du YB, Che DF, Energy Fuels, 26(12), 7367, 2012
  29. Wen Z, Wang Z, Zhou J, Zhou Z, Liu J, Cen K, Combust. Sci. Technol., 15, 505, 2009
  30. Deshpande N, Calcium and iron oxide reactivity studies for chemical looping applications of clean energy conversion, Ph.D. Thesis, Columbus: Ohio State University (2015).
  31. Zhong BJ, Shi WW, Fu WB, Fuel Process. Technol., 79(2), 93, 2002
  32. Dong L, Gao S, Song W, Xu G, Fuel Process. Technol., 88, 707, 2007
  33. Wang X, Li YJ, Shi JW, Zhao JL, Wang ZY, Liu HT, Zhou XG, Fuel Process. Technol., 180, 75, 2018
  34. Wang Y, Qin H, Deng F, Gong S, Liu R, Zheng X, Fang H, World Trop Agric. Inf., 491, 5, 2018
  35. Zhong Z, Yu G, Mo W, Zhang C, Huang H, Li S, Gao M, Lu X, Zhang B, Zhu H, RSC Adv., 9, 10425, 2019
  36. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275, 2017
  37. Cui M, Zhou J, Zhang X, Li T, Niu F, Clean Coal Technol., 25, 131, 2019
  38. Nhan HK, Kwon M, Kim S, Park JH, J. Mech. Sci. Technol., 33, 2967, 2019
  39. Damjohansen K, Hansen PF, Rasmussen S, Appl. Catal. B: Environ., 5(4), 283, 1995
  40. Illan-Gomez MJ, Linares-Solano A, Radovic LR, Salinas-Martinez C, Energy Fuels, 36, 112, 1995
  41. Ulusoy B, Wu H, Lin WG, Karlstrom O, Li SG, Song WL, Glarborg P, Dam-Johansen K, Fuel, 236, 297, 2019
  42. Chen Y, Guo Z, Wang Z, J. Iron Steel Res., 21, 6, 2009
  43. Ratcliffe CT, Pap G, Fuel, 59, 237, 1980
  44. Ortiz C, Chacartegui R, Valverde JM, Alovisio A, Becerra JA, Energy Conv. Manag., 149, 815, 2017
  45. Wang SQ, Liu MZ, Sun LL, Cheng WL, Korean J. Chem. Eng., 34(6), 1882, 2017
  46. Yang Y, Zhang Y, Appl. Energ. Technol., 3230, 32, 2013
  47. Borgwardt RH, Bruce KR, AIChE J., 32, 239, 1986
  48. Guo F, Hecker WC, Symp. Combust., 26, 2251, 1996
  49. Ma XT, Li YJ, Duan LB, Anthony E, Liu HT, Appl. Energy, 225, 402, 2018
  50. Guo HX, Kou XC, Zhao YJ, Wang SP, Sun Q, Ma XB, Chem. Eng. J., 334, 237, 2018
  51. Sun RY, Li YJ, Liu HL, Wu SM, Lu CM, Appl. Energy, 89(1), 368, 2012
  52. Li YJ, Zhao CS, Chen HC, Ren QQ, Duan LB, Energy, 36(3), 1590, 2011
  53. Duan L, Zhou W, Li H, Chen X, Zhao C, Korean J. Chem. Eng., 28(9), 1952, 2011