Issue
Korean Journal of Chemical Engineering,
Vol.37, No.4, 670-676, 2020
Microwave-assisted production of biodiesel using metal-organic framework Mg3(bdc)3(H2O)2
Metal-organic framework Mg-MOF: (Mg3(bdc)3(H2O)2) was synthesized via microwave (MW) irradiation, then used in the microwave-assisted production of biodiesel from oleic acid. Microwave irradiation was used as an alternative ecofriendly route to conventional heating. The synthesized Mg-MOF sample was characterized by XRD, TGA, FT-IR, nitrogen adsorption/desorption and TEM techniques. The catalytic activity of Mg-MOF in the microwave- assisted production of Biodiesel from oleic acid and methanol was studied. Vacancies created upon removal of linkers, metal clusters composed MOF frameworks, small pore size and its surface area are responsible for the high catalytic activity of the prepared Mg-MOF. The results indicated that Mg-MOF catalyst showed high conversion percentage (97%) that followed pseudo-first order, under mild reaction conditions (MW power: 150watts, reaction time: 8min, molar ratio of oleic acid to methanol: 1 : 15 and catalyst amount 0.15 wt%).
[References]
  1. Bart JCJ, Palmeri N, Cavallaro S, Biodiesel science and technology, 1st Ed., from soil to oil, Woodhead Publishing Ltd (2010).
  2. Sinsel SR, Riemke RL, Hoffmann VH, Renew. Energy, 145, 2271, 2020
  3. Wee HM, Yang WH, Chou CW, Padilan MV, Renew. Sust. Energ. Rev., 16, 5451, 2012
  4. Ateq EA, Biodiesel viscosity and flash point determination, Master’s thesis, An-Najah National University, Nablus, Palestine (2015).
  5. Cea M, Gonzalez ME, Abarzua M, Navia R, J. Environ. Manage., 242, 171, 2019
  6. Lee JH, Kim SB, Yoo HY, Lee JH, Han SO, Park C, Kim SW, Korean J. Chem. Eng., 30(6), 1335, 2013
  7. Fjerbaek L, Christensen KV, Norddahl B, Biotechnol. Bioeng., 102(5), 1298, 2009
  8. Yesiloglu Y, Process Biochem., 40(6), 2155, 2005
  9. Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Atabani AE, Chong WT, Renew. Sust. Energ. Rev., 24, 514, 2013
  10. Vahid BR, Haghighi M, Energy Conv. Manag., 126, 362, 2016
  11. Kim M, DiMaggio C, Salley SO, Ng KYS, Bioresour. Technol., 118, 37, 2012
  12. Wan H, Chen C, Wu Z, Que Y, Feng Y, Wang W, Wang L, Guan G, Liu X, ChemCatChem., 7, 441, 2015
  13. Aghabarari B, Dorostkar N, J. Taiwan Inst. Chem. Eng., 45, 1468, 2014
  14. Istadi I, Anggoro DD, Buchori L, Rahmawati DA, Intaningrum D, Proc. Environ. Sci., 23, 385, 2015
  15. Soltani S, Rashid U, Yunus R, Taufiq-Yap YH, Fuel, 178, 253, 2016
  16. Kaduk JA, Acta Cryst. Sec. B, 58, 815, 2002
  17. Rood JA, Noll BC, Henderson KW, Main Group Chem., 5, 21, 2006
  18. Davies RP, Less RJ, Lickiss PD, White AJP, Dalton Trans., 24, 2528, 2007
  19. Williams CA, Blake AJ, Wilson C, Hubberstey P, Schroder M, Cryst. Growth Des., 8, 911, 2008
  20. Dietzel PDC, Blom R, Fjellvag H, Eur. J. Inorg. Chem., 23, 3624, 2008
  21. Mendiratta S, Usman M, Tseng TW, Luo TT, Lee SF, Zhao L, Wu MK, Lee MM, Sun S, Lin YC, Lu KL, Eur. J. Inorg. Chem., 10, 1669, 2015
  22. Biswas A, Kim MB, Kim SY, Yoon TU, Kim SI, Bae YS, RSC Adv., 6, 81458, 2016
  23. Hasan Z, Jun JW, Jhung SH, Chem. Eng. J., 278, 265, 2015
  24. Nikseresht A, Daniyali A, Ali-Mohammadi M, Afzalinia A, Mirzaie A, Ultrason. Sonochem., 37, 203, 2017
  25. Hassan HMA, Betiha MA, Mohamed SK, El-Sharkawy EA, Ahmed EA, Appl. Surf. Sci., 412, 394, 2017
  26. Khan NR, Rathod VK, Process Biochem., 75, 89, 2018
  27. Singh RK, Kumar R, Singh DP, Savu R, Moshkalev SA, Mater. Today Chem., 12, 282, 2019
  28. Meng LY, Wang B, Ma MG, Lin KL, Mater. Today Chem., 1-2, 63, 2016
  29. Mavandadi F, Pilotti A, Drug Discov. Today, 11, 165, 2006
  30. Chellappan S, Aparna K, Chingakham C, Sajith V, Nair V, Fuel, 246, 268, 2019
  31. Sharma A, Kodgire P, Kachhwaha SS, Raghavendra HB, Thakkar K, Mater. Today-Proc., 5, 23064, 2018
  32. Lin JJ, Chen YW, J. Taiwan Inst. Chem. E., 75, 43, 2017
  33. Jermolovicius LA, Cantagesso LCM, do Nascimento RB, de Castro ER, Pouzada EVD, Senise JT, Chem. Eng. Process., 122, 380, 2017
  34. El Sherbiny SA, Refaat AA, El Sheltawy ST, J. Adv. Res., 1, 309, 2010
  35. Ketzer F, Celante D, de Castilhos F, Microporous Mesoporous Mater., 291, 109704, 2020
  36. Wang YT, Fang Z, Zhang F, Catal. Today, 319, 172, 2019
  37. Cannilla C, Bonura G, Costa F, Frusteri F, Appl. Catal. A: Gen., 566, 121, 2018
  38. Alismaeel ZT, Abbas AS, Albayati TM, Doyle AM, Fuel, 234, 170, 2018
  39. Hykkerud A, Marchetti JM, Biomass Bioenerg., 95, 340, 2016
  40. Abd El Salam HM, Zaki T, Inorg. Chim. Acta., 471, 203, 2018
  41. Zhou ZY, Mei L, Ma C, Xu F, Xiao J, Xia QB, Li Z, Chem. Eng. Sci., 147, 109, 2016
  42. Cardoso AL, Neves SCG, da Silva MJ, Energies, 1, 79, 2008
  43. Ilgen O, Fuel Process. Technol., 124, 134, 2014
  44. Lv P, Wang J, Xing S, Li Z, Fan P, Wang Z, Comparison between heterogeneous acid and base catalyzed biodiesel production: catalytic mechanism and performance, 7-10 May 2017, Rio de Janeiro, Brazil.
  45. El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM, Allam NK, Chem. Eng. J., 322, 167, 2017
  46. Gan SY, Ng HK, Chan PH, Leong FL, Fuel Process. Technol., 102, 67, 2012
  47. Vitillo JG, RSC Adv., 5, 36192, 2015
  48. Shaban M, Abukhadra MR, Hosny R, Rabie AM, Ahmed SA, Negm NA, J. Mol. Liq., 279, 224, 2019
  49. Cirujano FG, Corma A, Xamena FXLI, Catal. Today, 257, 213, 2015
  50. Pena-Rodriguez R, Marquez-Lopez E, Guerrero A, Chinas LE, Hernandez-Gonzalez DF, Rivera JM, Mater Lett., 217, 117, 2018
  51. Han M, Li Y, Gu Z, Shi H, Chen C, Wang Q, Wan H, Guan G, Colloids Surf. A: Physicochem. Eng. Asp., 553, 593, 2018
  52. Xie WL, Wan F, Chem. Eng. J., 365, 40, 2019